Quantum Algorithms
for Beginners

Chris Cade, University of Bristol

Quantum Information for Developers
ETH Zurich
2018

Quantum Algorithms

* There are a lot of qguantum algorithms

* The '‘Quantum Algorithm Zoo’ cites 392 papers on
guantum algorithms

* Mostly, they solve specific mathematical problems

 E.g. Factoring, matrix inversion

* Often cleverly combine smaller guantum sub-
routines

This lecture

 Will focus on a few important algorithms / sub-routines:

* (Grover’s search, phase estimation, factoring, matrix inversion (HHL),
Hamiltonian simulation

 Mostly give high-level overviews

 Hopefully enough detail to be able to implement Grover’s search (and
understand what's happening!)

* For a more complete introduction:

* Ashley Montanaro’s lecture notes

 Ronald de Wolf’s lecture notes

* Quantum Computation and Quantum Information by Nielsen and Chuang

http://people.maths.bris.ac.uk/~csxam/teaching
http://www.homepages.cwi.nl/~rdewolf/qcnotes.pdf

We might divide quantum algorithms into two categories:

Polynomial speedup Exponential speedup

Grovers Search Integer Factoring

Quantum walks ~ Matrix Inversion

Graph algorithms | Phase Estimation

Quantum Fourier Transform
Minimum finding

Quantum Simulation

We might divide quantum algorithms into two categories:

Polynomial speedup Exponential speedup

Grovers Search Integer Factoring

Quantum walks ~ Matrix Inversion

Graph algorithms | Phase Estimation

Quantum Fourier Transform
Minimum finding

Quantum Simulation

We might divide quantum algorithms into two categories:

Polynomial speedup Exponential speedup

Grovers Search Integer Factoring

Quantum walks ~ Matrix Inversion

Graph algorithms | Phase Estimation

Quantum Fourier Transform
Minimum finding

Quantum Simulation

We might divide quantum algorithms into two categories:

Polynomial speedup Exponential speedup

Grovers Search Integer Factoring

Quantum walks ~ Matrix Inversion

Graph algorithms | Phase Estimation

Quantum Fourier Transform
Minimum finding

Quantum Simulation

We might divide quantum algorithms into two categories:

Polynomial speedup Exponential speedup

Grovers Search Integer Factoring

Quantum walks Matrix Inversion

Graph algorithms | Phase Estimation

Quantum Fourier Transform
Minimum finding

Quantum Simulation

Grovers Algorithm

Grovers Algorithm

v 3@ 4
iag @y .

Grovers Algorithm

+666666606066660060000004

Grovers Algorithm

1 66666666606666066060600000

Grovers Algorithm

-66666006000000000000000

w

1 0 6666666666660060066060664¢

Grovers Algorithm

0009000000000 0 0909

s Algorithm

Grover

w

1 0 6666666666660060066060664¢

' 0666666666600000000000

s Algorithm

Grover

w

1 0 6666666666660060066060664¢

' 0666666666600000000000

s Algorithm

Grover

06666666064

w

0 6666666666664

s Algorithm

Grover

06666666064

w

0 6666666666664

Algorithm

S

Grover

06666666064

w

0 6666666666664

Algorithm

S

Grover

w

1 0 6666666666660060066060664¢
' 0 666666066060606000000000604

Grovers Algorithm

Grovers Algorithm

v 3@ 4
iag @vy

-

1 0 66666666666606060606060664¢
' 0 6666666660606600000000604

Grovers Algorithm

+6666666606666060060000004

1 0 6666666666660000606060604
' 0 6666666660606600000000004

Grovers Algorithm

' 0666666666600000000000

1 0 66666666666600000000004
' 0 666666060000000000000004¢
0 66666666660000000000004¢
' 6 6666666666660600600000004

+66666666060000000000000

-

1 0 66666666666606060606060664¢
' 0 6666666660606600000000604

Grovers Algorithm

-666660600000060000000000

Grovers Algorithm

-

1 0 66666666666606060606060664¢
' 0 6666666660606600000000604
' 0 66666660000000000000004
1 0 66666666600000000000004
0 66660600000000000000004
' 0 666666666666060600000004¢

' 0666666666600000000000

1 0 66666666606066606060060000604
' 0 666666060000000000000004¢
' 0 66666666000600000000004
1 0 66666660000000000000004

1 6666666666666060000000

-

1 0 66666666666606060606060664¢
' 0 6666666660606600000000604
0 66666666660000000000004¢

' 0666666666600000000000

Grovers Algorithm

-

1 0 66666666666606060606060664¢
0 66666660000000000000004
0 66660600000000000000004
1 0 66666666600000000000004
0 66660600000000000000004
' 0 666666666666060600000004¢

1 6666666666666060000000

-

1 0 66666666666606060606060664¢
' 0 6666666660606600000000604
0 66666666060666006600000004

' 0666666666600000000000

, dady ol
RERRETISE

s sl

.

Photo: IBM Research

-

1 0 66666666666606060606060664¢
' 0 6666666660606600000000604
0 66666666060666006600000004

1 0 66666666600000000000004
0 66666060600000000000004
1 0 66666660000000000000004

Photo: IBM Research

, dady ol
RERRETISE

L adsuli na

g
L

1 6666666666666060000000

-

1 0 66666666666606060606060664¢
' 0 6666666660606600000000604
0 66666666060666006600000004

Grovers Algorithm

' 0666666666600000000000

Algorithm

S

Grover

e '
o9’ 190

9.
-“

So~ L XN
& S =
LA .
®” "N 200
Soee’ %90
ﬁOoQA ro 0o’
ar

Photo: IBM Research

-

1 0 66666666666606060606060664¢
0 66666660000000000000004
0 66660600000000000000004
1 0 66666666600000000000004
0 66660600000000000000004
' 0 666666666666060600000004¢

Photo: IBM Research

, dady ol
RERRETISE

L adsuli na

-

1 0 66666666666606060606060664¢
' 0 6666666660606600000000604
0 66666666060666006600000004

Grovers Algorithm

' 0666666666600000000000

-

1 0 66666666666606060606060664¢
' 0 6666666660606600000000604
' 0 66666660000000000000004
1 0 66666666600000000000004
0 66660600000000000000004 _
' 0 666666666666060600000004¢

Photo: IBM Research

' 0666666666600000000000

]
1 0 66666666606066606060060000604
' 0 666666060000000000000004¢
' 0 66666666000600000000004
1 0 66666660000000000000004

" ‘.

SNy

\ _ -P»r.z.,.»

} ﬂ!_wkmm ,
LRS-

Saas s HREER

o

o

-

1 0 66666666666606060606060664¢
' 0 6666666660606600000000604
0 66666666660000000000004¢

Grovers Algorithm

' 0666666666600000000000

Solves the ‘Unstructured Search’ problem

Works in the black box / query settmg

Frnd 1 marked |tem out of N |tems

- Classical Computer: N queries

- Quantum Computer: ~/N queries

Reminder

Reminder

We represent quantum states using ket notation

Reminder

We represent quantum states using ket notation

|77D> represents a column vector

Reminder

We represent quantum states using ket notation

|77D> represents a column vector

<77b | s its complex conjugate — a row vector

Reminder

We represent quantum states using ket notation

|¢> represents a column vector

<¢ | s its complex conjugate — a row vector

We represent an integer U as the quantum state ‘CB>

Reminder

We represent quantum states using ket notation

|¢> represents a column vector

<¢ | s its complex conjugate — a row vector

We represent an integer U as the quantum state ‘CE‘>

s 5)

Reminder

We represent quantum states using ket notation

|¢> represents a column vector

<¢ | s its complex conjugate — a row vector

We represent an integer U as the quantum state ‘ZIZ>

s 5)

The inner product between two states/vectors is written as

Reminder

We represent quantum states using ket notation

|¢> represents a column vector
<¢ | s its complex conjugate — a row vector

We represent an integer U as the quantum state ‘33>

e.g.

The inner product between two states/vectors is written as

(Yl®)

Reminder

We represent quantum states using ket notation

|¢> represents a column vector
<¢ | s its complex conjugate — a row vector

We represent an integer U as the quantum state ‘33>

e.g.

The inner product between two states/vectors is written as

(Y|¢) = cos b

Operations on quantum states are via unitary operators
(Matrices that preserve the norm of the vector)

Operations on quantum states are via unitary operators

(Matrices that preserve the norm of the vector)

1
7 —

V2

E.g. the Hadamard gate:

I 1
I -1

Operations on quantum states are via unitary operators

(Matrices that preserve the norm of the vector)

E.g. the Hadamard gate: H|0) = L(\O> + |1))
1 [1 1 V2
H= V2|1 -1

Operations on quantum states are via unitary operators
(Matrices that preserve the norm of the vector)

E.g. the Hadamard gate: H|0) =

mard %(\o>+|1>>
o L1 1
a1 -1 HI1) = (o) = 1)

Operations on quantum states are via unitary operators
(Matrices that preserve the norm of the vector)

|
H=— !

V2 |1

|

1

E.g. the Hadamard gate: H|0) =

HI|1) =

1
ﬁam +[1))

. l
ﬁum = 1))

- We represent sequences of opera:

H

-5 (10) +

1) —

H

L(())_

'lONS as Circults:

1)
1))

Operations on guantum states are via unitary operators
(Matrices that preserve the norm of the vector)

H =

1 |1
V2 |1

E.g. the Hadamard gate:
.
1

H|0) =

HI|1) =

7(\0> +[1))
1

ﬁum = 1))

- We represent sequences of opera:

1) —

HF— 5
HF— 5 (

0) +
0) —

'lONS as Circults:

1)
1))

Given a state W> the probability of measuring \§b> S

Operations on guantum states are via unitary operators
(Matrices that preserve the norm of the vector)

1 |1

7 —
/2 |1

E.g. the Hadamard gate:
.
1

H|0) =

HI|1) =

7(\0> +[1))
1

ﬁum = 1))

- We represent sequences of opera:

1) —

HF— 5
HF— 5 (

0) +
0) —

'lONS as Circults:

1)
1))

Given a state W> the probability of measuring \§b> S:

Pr[measure [¢)] = [(¢|1)) "

Ingredients for Grover’s Algorithm:

Ingredients for Grover’s Algorithm:

1. An Oracle’

Usl) o x) if x is the marked item

—|x) Otherwise

Ingredients for Grover’s Algorithm:

1. An Oracle’

x) if x is the marked item
Ugl) — .
—|x) Otherwise
2. An operator .
r) ifx=0"

U()‘.CU> —

{

r) Otherwise

Ingredients for Grover’s Algorithm:

1. An Oracle’

Usl) o x) if x is the marked item

—|x) Otherwise

2. An operator

—|z) ixz=0"
xr) Otherwise
3. Some Hadamards Hadamard gates on all n qubits

He™

Ingredients:

1. An ‘Oracle’
- |.’I;> Ifx is the marked item
U f I:U) —>
‘CB) Otherwise

2. An operator n
—lfL’> =0

U0|:13> — |x>

Otherwise

3. Some Hadamards

He"

Ingredients:

1. An ‘Oracle’

Ug|z) —

- |£L’> Ifm is the marked item

| x> Otherwise

2. An operator

U0|£II> —>

—|CI3> it L — 0"

| iL’> Otherwise

3. Some Hadamards

He"

Using U we define the operator

D = H¥"UyH®"

D = H®"
H®"Uy H®"

UgH®
H®
1D =

H
0) <H
- y
0)—{H
0) == H =t

Why does this work?

Why does this work?

Urand D are reflections

Why does this work?

Urand D are reflections

Why does this work?

Urand D are reflections

|z) if x is the marked item

Uslx) — {

—|x) Otherwise

Why does this work?

Urand D are reflections

|z) if x is the marked item

Uﬂaz) — {

—|x) Otherwise

Reflection about the marked item

Why does this work?

Urand D are reflections

|z) if x is the marked item

Uﬂaz) — {

—|x) Otherwise

Reflection about the marked item

Why does this work?

Usand D are reflections [4)

|z) if x is the marked item

Uﬂaz) — {

—|x) Otherwise

Reflection about the marked item

Why does this work?

Urand D are reflections

|z) if x is the marked item

Uﬂaz) — {

—|x) Otherwise

Reflection about the marked item

Why does this work?

Usand D are reflections [4)

|z) if x is the marked item

Uﬂaz) — {

—|x) Otherwise

Reflection about the marked item

Why does this work?

Urand D are reflections

|z) if x is the marked item

Uﬂaz) — {

—|x) Otherwise

Reflection about the marked item

Why does this work?

Usand D are reflections [4)

|z) if x is the marked item

Uﬂaz) — {

—|x) Otherwise

Reflection about the marked item

Why does this work?

Usand D jare reflections [4)

|z) if x is the marked item

Uﬂaz) — {

—|x) Otherwise

Reflection about the marked item

Why does this work?

U fano@are reflections [¥))
| I

if is the marked item

Otherwise

= HE®"UyH®"
—‘33) it — On
U()‘QZ') — ‘(]j> Otherwise

Why does this work?

Uy and@re reflections V)

if is the marked item

Otherwise

1
Rn B | N
0) = Jon Z lz) = |+)

| 1D= H®nUOH® (

—|$> it — On

UOIx) '—> I.’L’> Otherwise

Why does this work?

Uy and@re reflections

) if = is the marked item |

—x) Otherwise

Reﬂec’rionabou’r the marked item |-'m>

An 1 |
_ 0) = \m Z z) = |+)

7 -
e o

D= H®"U,H®"

—|£B> it — On

U0|x> — I,’L’> Otherwise

Reflection about the state orthogonal to the uniform superposition,|+)

Why does this work?

Uy and@re reflections

) if = is the marked item |

—x) Otherwise

Reﬂec’rionabou’r the marked item |-'m>

An 1 |
_ 0) = \m Z z) = |+)

1 », "‘V | >
D= HE®"UyH®"
_ICL'> v = 0" |¢>

U0|x> — I,’L’> Otherwise

Reflection about the state orthogonal to the uniform superposition,|+)

Why does this work?

Uy and@re reflections

) if = is the marked item |

—x) Otherwise

Reﬂec’rionabou’r the marked item |-'m>

An 1 |
_ 0) = \m Z z) = |+)

'D— HEU HE)
—|£B> it = On

U0|x> — I,’L’> Otherwise

[¥)

Reflection about the state orthogonal to the uniform superposition,|+)

Why does this work?

Uy and@re reflections

) if = is the marked item |

—x) Otherwise

Reﬂec’rionabou’r the marked item |-'m>

An 1 |
_ 0) = \m Z z) = |+)

1 », "‘V | >
D= HE®"UyH®"
_ICL'> v = 0" |¢>

U0|x> — I,’L’> Otherwise

Reflection about the state orthogonal to the uniform superposition,|+)

Why does this work?

Uy and@re reflections

) if = is the marked item |

—x) Otherwise

Reﬂec’rionabou’r the marked item |-'m>

An 1 |
_ 0) = \m Z z) = |+)

'D— HEU HE)
—|£B> it = On

U0|x> — I,’L’> Otherwise

[¥)

Reflection about the state orthogonal to the uniform superposition,|+)

Why does this work?

Uy and@re reflections

if is the marked item |

Otherwise

1 o [—[®nUOH® |

—|$> it — On

U0|x> — |x> Otherwise

[4)

Reflection about the state orthogonal to the uniform superposition, |+)

Why does this work?

T times
- H H = — HE
0 - H — - —
Uf D Uf
O—H~ = == p—— =i

Why does this work?

T times
- H H = — HE
0 - H — - —
Uf D Uf
O—H~ = == p—— =i

Why does this work?

+1) M)

S T times
ok = H = —
|| Uy D Uy

>

>

Why does this work?

+1) M)

0 |
0) =
B T times
ok = H = —
|| Uy D Uy D

Why does this work?

++) [m)

Why does this work?

1 T "'

\
\/¢> :H:.:”‘():} 1 Z ’
T times "
odE- =4 H — - —
0OTJHH —H o~ —

Why does this work?

\
%/% = H70)]_ Z z)
T times |
O)—H~ = = - — =t
o] H H = F
Us D Us

Why does this work?

)
T times
o~ H H o — HE
O H H — - —
Uf D Uf
O—H~ = == p—— =i

Why does th

IS work?
s 1)

)+
T times
0) —{ H |— . — HE
0) = H . — HF
Uf Uf

Why does this work?

1)
T times
o4 H o = — HE
O H H — - — T
Uf D Uf
0) —H— — — — = —

Why does this work?

B 1)

T times
O=H—~ = 7 —] =
O=H— = om0
Us D Uy
O)=H— = =t

Why does this work?

DR
T times
o+ H M = — HE
0 =H = — - — [t
Uf D Uf
O—H~ == = p—— =i

Why does this work?
‘¢>Lﬂ?

3
T times
‘0> || | I R I_E
4 = H o
Us D Uy
0) = H — — = = —h

Why does this work?
l

Y)
T times
o H H o — HE
0 H H — = T
Uf D Uf
O—H~ = == p—— =i

Why does this work?
l

Y)
T times
o H H o — HE
- H H — - — T
Uf D Uf
O—H—~ == == p—— i

Why does this work?

Tw)

Probability of measuring |m) = |(m|v)|?

T times

Why does this work?

With high probabillity, the
algorithm outputs m

Probability of measuring |m) = |(m|v)|?

T times

g = o — - — Hf

How long does it take?

How long does it take?

[¥)

How long does it take?

[¥)

|
x

How much closer do we get after each iteration?

How long does it take?

How much closer do we get after each iteration?

How long does it take?

How much closer do we get after each iteration?

How long does it take?

How much closer do we get after each iteration?

How long does it take?

How much closer do we get after each iteration?

How long does it take?
+)

How much closer do we get after each iteration?

How long does it take?
[+ [T

70
c’) /

How much closer do we get after each iteration?

How long does it take?
)12

How much closer do we get after each iteration?

<W)+<W >
5 7 > 1

How long does it take?

How much closer do we get after each iteration?

G-+ G-

How long does it take?
+) 17

How much closer do we get after each iteration?

5-7)+ (G-

How long does it take?
H | ‘ I)

How much closer do we get after each iteration?

<W)+(’T)
5 7 B

How long does it take?
)12

How much closer do we get after each iteration?

<W)+<W >
5 7 > 1

How long does it take?
R

— Y | — :__2

How much closer do we get after each iteration?

(z-7)+(53-)
2 / 2 /

How long does it take?

y))

[+

v/
, .
a 3
- Sie= 1 AN
b
i

,\) T
/ /y_ 2 /y

How much closer do we get after each iteration?

(z-7)+(53-)
2 / 2 /

How long does it take?
H‘}/“> |¢>

— v | — :__2

How much closer do we get after each iteration?

T | Tr N (s 9 (s 2)
(G-2)+(G-)-G-m)- (G-

How long does it take?
H‘}/“> |¢>

— v | — :__2

How much closer do we get after each iteration?

T | Tr N (s 9 (s 2)
(G-2)+(G-)-G-m)- (G-

How long does it take?
)| 7
IS

How much closer do we get after each iteration?

T N 7 N (s 9 (s 9
(3-1)+G)-G-2)-G-2)

How long does it take?
)

How much closer do we get after each iteration?

T R v) [9 (s 9
<2_) - (2 ’>_(§_ 7> N (5_ 7>

How long does it take?

How long does it take?

How long does it take?

How long does it take?
cosSy = (++
SIny = (+

How long does it take?

COS 7Y = (4
Siny = (+

2=

How long does it take?
+5)1Y

\
\
\
\
\
v \
)
J
J
J
J
J
/

2=

How long does it take?
)| 1T

2=

How many iterations to get as close as possible?

How long does it take?
I\ IT)
[+ COS7Y = (+*|m)

\\
Il)
) =
|
,/

How many iterations to get as close as possible?

2=

How long does it take?

‘+ - I /
e COS 7Y oy

|
™
'_

\\
Il)
) =
|
,/

||
+

S11 7Y

2=

How long does it take?
I\ IT)
[+l coSy = (++|m)

\\
Il)
) =
|
,/

2=

How long does it take?
I\ IT)
[+l coSy = (++|m)

\\
Il)
) =
|
,/

2=

How long does it take?

\
IN1TTL) ,
[+ O COS7Y = (+*|m)

m) =

~/

(s
3 7

How many iterations to get as close as possible?

g—v T 1 N@
27y 4~y 2 \r

2=

Summary: Grovers search

Summary: Grovers search

- Grover’s search is very general!

Summary: Grovers search

- Grover’s search is very general!

-+ A'query’ might involving running some other

classical/quantum algorithm

Summary: Grovers search

- Grover’s search is very general!

-+ A'query’ might involving running some other

classical/quantum algorithm

- (Glves a generic square-root speedup

Summary: Grovers search

- Grover’s search is very general!

-+ A'query’ might involving running some other

classical/quantum algorithm

- (Glves a generic square-root speedup
- But not always faster than classical!

Phase Estimation

Phase Estimation

-+ An important qguantum computing primitive

Phase Estimation

-+ An important qguantum computing primitive

- Often used as an ingredient in more complex algorithms:
- Integer factorisation
- Matrix inversion
+ Quantum counting

- Quantum walks

Phase Estimation

Phase Estimation
AX = \X

Phase Estimation
— \X

Eigenvcfor

Phase Estimation
— \X

Eigenvcfor

Phase Estimation
— \X

Eigenvcfor

—or a unitary U:

Phase Estimation
— \X

Eigenvcfor

—or a unitary U:

Ulz) = e*™|z)

Phase Estimation
— \X

Eigenvc’ror

—or a unitary U-

Phase Estimation
— \X

Eigenvc’ror

—or a unitary U-

Phase Estimation
— \X

Eigenvc’ror

Phase Estimation
— \X

Eigenvc’ror

'Phase Estimation: Given(U and|z), estimate (/ |

Phase Estimation Circult

Phase Estimation Circuit

QFT !

Phase Estimation Circuit

‘Com‘rolle'wers of [/

QFT !

Phase Estimation Circuit

Inverse quantum Fourier transform

0) 4H .
0) 4/ H .

0) 4 H T

[y —A2H 2°

QFT !

‘Com‘rolle'wers of [/

Phase Estimation Circuit

Inverse quantum Fourier transform

0) 4H .
0) 4/ H .

0) 4 H T

[y —A2H 2°

QFT !

‘Com‘rolle'wers of [/

Phase Estimation Circuit

Inverse quantum Fourier transform

QFT !

Measure an estimate

{ # of the phase (J :
‘Controlled’ powers of [/ ’ 0 |

Phase Estimation Circuit

Inverse quantum Fourier transform

QFT !

Phase Estimation Circuit

Inverse quantum Fourier transform

Quantum Fourier transform (QFT)
QFT !

Phase Estimation Circuit

Inverse quantum Fourier transform

Quantum Fourier transform (QFT)
QFT !

» Can be seen as a generalisation of
the Hadamard gate

Phase Estimation Circuit

Inverse quantum Fourier transform

Quantum Fourier transform (QFT)

QFT,,*
» Can be seen as a generalisation of
the Hadamard gate

* Formally:

QFTN\@:% N e v y)

Phase Estimation Circuit

Inverse quantum Fourier transform

QFT !

Measure an estimate

{ # of the phase (J :
‘Controlled’ powers of [/ ’ 0 |

Factoring

Arguably the most famous application of guantum computers

Factoring

Arguably the most famous application of guantum computers

N

Factoring

Arguably the most famous application of guantum computers

N =a X b

Factoring

Arguably the most famous application of guantum computers

N =a X b
15

Factoring

Arguably the most famous application of guantum computers

N =a X b
15 = 3 X 5

Factoring

Arguably the most famous application of guantum computers

N =a X b
15 = 3 X 5

Important modern crypto-systems (e.g. RSA) rely on this
problem being intractable for computers.

Factoring

Arguably the most famous application of guantum computers
N =a X b
15 = 3 X 5

Important modern crypto-systems (e.g. RSA) rely on this
problem being intractable for computers.

But a quantum computer can solve it quickly!

How quickly?

How quickly?

Recommended key size for RSA is 2048 bits

How quickly?

Recommended key size for RSA is 2048 bits

How quickly?
Recommended key size for RSA is 2048 bits

227018012937850141935804051202045867410612359627665839070940218792151
714831191398948/0133091111044901683400949483846818299518041 7635079489
225907 749254660881 71879259465921026597046/0044981989909686203946001 /77
430944 738110569912941285428918808553627074076/0722593737 7726669734409
7736124333639/308051/630915068363107953126072395203652900321058488395
079814523072994171857157962974549950235053160409198591937180233074148
80446217922800831/6604093865634457103477/855345/71210805307363945359239
3265186603051504106096643731332367283153932350006793710/5419554373624
33248361242525945868802353916/66181532375855504886901432221349733

How quickly?
Recommended key size for RSA is 2048 bits

227018012937850141935804051202045867410612359627665839070940218792151
714831191398948/0133091111044901683400949483846818299518041 7635079489
225907 749254660881 71879259465921026597046/0044981989909686203946001 /77
430944 738110569912941285428918808553627074076/0722593737 7726669734409
7736124333639/308051/630915068363107953126072395203652900321058488395
079814523072994171857157962974549950235053160409198591937180233074148
80446217922800831/6604093865634457103477/855345/71210805307363945359239
3265186603051504106096643731332367283153932350006793710/5419554373624
33248361242525945868802353916/66181532375855504886901432221349733

= 7 x 7

How quickly?
Recommended key size for RSA is 2048 bits

227018012937850141935804051202045867410612359627665839070940218792151
714831191398948/0133091111044901683400949483846818299518041 7635079489
225907 749254660881 71879259465921026597046/0044981989909686203946001 /77
430944 738110569912941285428918808553627074076/0722593737 7726669734409
7736124333639/308051/630915068363107953126072395203652900321058488395
079814523072994171857157962974549950235053160409198591937180233074148
80446217922800831/6604093865634457103477/855345/71210805307363945359239
3265186603051504106096643731332367283153932350006793710/5419554373624
33248361242525945868802353916/66181532375855504886901432221349733

= 7 x 7

Best known classical algorithm : ~ 1 Billion Years

How quickly?
Recommended key size for RSA is 2048 bits

227018012937850141935804051202045867410612359627665839070940218792151
714831191398948/0133091111044901683400949483846818299518041 7635079489
225907 749254660881 71879259465921026597046/0044981989909686203946001 /77
430944 738110569912941285428918808553627074076/0722593737 7726669734409
7736124333639/308051/630915068363107953126072395203652900321058488395
079814523072994171857157962974549950235053160409198591937180233074148
80446217922800831/6604093865634457103477/855345/71210805307363945359239
3265186603051504106096643731332367283153932350006793710/5419554373624
33248361242525945868802353916/66181532375855504886901432221349733

= 7 x 7

Best known classical algorithm : ~ 1 Billion Years

Shor’s algorithm : ~ 100 Seconds”

*For a quantum computer running at ~1GHz.
Source: “A Compare between Shor's quantum factoring algorithm and General Number Field Sieve”, Hamdi et al.

Shor's Algorithm

Shor's Algorithm

Reduces the problem of factoring to the problem ot period
finding

Shor's Algorithm

Reduces the problem of factoring to the problem ot period
finding

Uses a quantum algorithm for fast period finding.

Shor's Algorithm

Reduces the problem of factoring to the problem ot period
finding

Uses a quantum algorithm for fast period finding.

If Nis even, return =2
It N=p/kfor p prime, return p
Randomly choose 7<g<N-1
3.1. If f=gcd(qg,N)>1, return f
4. Determine the order k of g modulo N
4.1. If kis odd, repeat from step 3
5. Write k=2l and determine g/l mod N with T<r<N
5.1. It 1<f=gcd(r-1,N)<N, return f
5.2. It 1<f=gcd(r+1,N)<N, return f
5.3. Else, repeat from step 3

—_

SEN

Shor's Algorithm

Reduces the problem of factoring to the problem ot period
finding

Uses a quantum algorithm for fast period finding.

shors Algorithm

1. If Nis even, return =2 . .

2. If N=p/kfor p prime, return p FGS"’ Quantum algorl’rhm using
3. Randomly choose 7<g<N-1 Phase Esfima’rion

3.1. If f=gcd(qg,N)>1, return f
4. Determine the order k of g modulo N
4.1. If kis odd, repeat from step 3
5. Write k=2l and determine g/l mod N with T<r<N
5.1. It 1<f=gcd(r-1,N)<N, return f
5.2. It 1<f=gcd(r+1,N)<N, return f
5.3. Else, repeat from step 3

Shor's Algorithm

Reduces the problem of factoring to the problem ot period
finding

Uses a quantum algorithm for fast period finding.

If Nis even, return =2

If N=p~k for p prime, return p FGS"’ Quantum algorl’rhm USIT'Ig

Randomly choose 7<g<N-1
3.1. If f=gcd(q,N)>1, return f Phase Estimation

4. Determine the order kof gmodulo N
4.1. If kis odd, repeat from step 3

5. Write k=2l and determine g/l mod N with T<r<N
5.1. It 1<f=gcd(r-1,N)<N, return f
5.2. It 1<f=gcd(r+1,N)<N, return f
5.3. Else, repeat from step 3

—L &

SEN

Shor's Algorithm

Reduces the problem of factoring to the problem ot period
finding

Uses a quantum algorithm for fast period finding.

If Nis even, return =2

If N=p~k for p prime, return p FGS"’ Quantum algorl’rhm USIT'Ig

Randomly choose 7<g<N-1
3.1. If f=gcd(q,N)>1, return f Phase Estimation

4. Determine the order kof gmodulo N
4.1. If kis odd, repeat from step 3

5. Write k=2l and determine g/l mod N with T<r<N
5.1. It 1<f=gcd(r-1,N)<N, return f
5.2. It 1<f=gcd(r+1,N)<N, return f
5.3. Else, repeat from step 3

—L &

SEN

Shor's Algorithm

Reduces the problem of factoring to the problem ot period
finding

Uses a quantum algorithm for fast period finding.

If Nis even, return =2

If N=p~k for p prime, return p FGS"’ Quantum algorl’rhm USIT'Ig

Randomly choose 7<g<N-1
3.1. If f=gcd(q,N)>1, return f Phase Estimation

4. Determine the order kof gmodulo N
4.1. If kis odd, repeat from step 3

5. Write k=2l and determine g/l mod N with T<r<N
5.1. It 1<f=gcd(r-1,N)<N, return f
5.2. It 1<f=gcd(r+1,N)<N, return f
5.3. Else, repeat from step 3

All other steps can be performed efficiently by a classical
computer.

—L &

SEN

Given an n-bit integer:

1/3
Classical number field sieve : O(Qn)

Shor’s algorithm : O(TLS)

1 billion years
1 million years

1 thousand years
100 years
10 years

one'yeaf'w e
one month

o
:
=
=
.
C
c
T
B
9
o
o
8
Q
£
b

100 seconds _. -~

one second

Source: “A Compare between Shor's quantum factoring algorithm and General Number Field Sieve”, Hamdi et al.

Hamiltonian Simulation

Hamiltonian Simulation

* In guantum mechanics, physical systems are described by
‘Hamiltonians'.

Hamiltonian Simulation

* In guantum mechanics, physical systems are described by
‘Hamiltonians'.

* For our purposes, these are Hermitian (4 = Af) matrices,
which we will write as H

Hamiltonian Simulation

* In guantum mechanics, physical systems are described by
‘Hamiltonians'.

* For our purposes, these are Hermitian (4 = Af) matrices,
which we will write as H

i « The evolution of quantum systems is governed by |
Schrodinger’s equation |

m—w) = HO)

Hamiltonian Simulation

* In guantum mechanics, physical systems are described by
‘Hamiltonians'.

* For our purposes, these are Hermitian (4 = Af) matrices,
which we will write as H

| - The evolution of quantum systems is governed by |
{ Schrodinger’s equation- |

m—w() = HO)

'« When H doesn't ¢ " e er time, the solution to this |

| equation is f

his Is a unitary matrix

his Is a unitary matrix

i Hamiltonian Simulation:

,§ Given a Hamiltonian H, construct a quantum circuit that [

approximates e_ZHt

his Is a unitary matrix

i Hamiltonian Simulation:

I Given a Hamiltonian /1, construct a quantum circuit that |

approximates e Ut

There are a number of quantum algorithms that can do this
efficiently for certain types of Hamiltonian

Why is this useful?

Why is this useful?

* Physical systems are quantum mechanical

Why is this useful?

* Physical systems are quantum mechanical

* [f we want to simulate them on a computer, we're going to
need a guantum one

Why is this useful?

Physical systems are guantum mechanical

f we want to simulate them on a computer, we're going to
need a guantum one

Classical system

Why is this useful?

Physical systems are guantum mechanical

f we want to simulate them on a computer, we're going to
need a guantum one

Classical system Classical _cor?pu‘rer

Why is this useful?

Physical systems are guantum mechanical

f we want to simulate them on a computer, we're going to
need a guantum one

Classical system Classical _conTnpu‘rer

Quantum system

»
(i p
Y andN
(]
AP

Why is this useful?

Physical systems are guantum mechanical

f we want to simulate them on a computer, we're going to
need a guantum one

Classical system Classical _conTnpu‘rer

Quantum system

‘ f’b
e / ’
‘_" N\ 4 = . "
; e Pt - '
p (-~) [\/. S '(, 4
% ET o o . \
s

Quantum computer

HHL

Named after Harrow, Hassidim, and Lloyd, who invented it in
2008

HHL

Named after Harrow, Hassidim, and Lloyd, who invented it in
2008

Attacks one of the most fundamental tasks in science —
solving systems of linear equations:

HHL

Named after Harrow, Hassidim, and Lloyd, who invented it in
2008

Attacks one of the most fundamental tasks in science —
solving systems of linear equations:

HHL

Named after Harrow, Hassidim, and Lloyd, who invented it in
2008

Attacks one of the most fundamental tasks in science —
solving systems of linear equations:

': AR ;

3
. Solve for X

HHL

Named after Harrow, Hassidim, and Lloyd, who invented it in
2008

Attacks one of the most fundamental tasks in science —
solving systems of linear equations:

o L e,

': AR

= |
~ Solve for X |

Classically: Takes time polynomial in the size of the matrix

HHL

Named after Harrow, Hassidim, and Lloyd, who invented it in
2008

Attacks one of the most fundamental tasks in science —
solving systems of linear equations:

o L e,

': AR

= |
~ Solve for X |

Classically: Takes time polynomial in the size of the matrix

HHL “solves’ this problem in logarithmic time

HHL

Input:

HHL

Input: b>,A

Output: quantum state

AX =D |

HHL

Input: b>, A

Output: quantum state .CC>

SO long as we can prepare |b> and only need to know global

oroperties of |), this is useful.

Rough Outline

Rough Outline

Input:

Rough Outline

Input:

Rough Outline

y Simulation

b)

Input:

Rough Outline

A Hamiltonian Simulation

b) .

\Phase Estimation

X)
A 5 ol
% % k. 5
s -9 Ce N
. N a0
d" o 2% o N
T) : V'Y

Rough Outline

A Hamiltonian Simulation

b) .

\Phase Estimation

Input:

A few ‘simple’ tricks

Rough Outline

Rough Outline

AlD)= 251
o slmple tricks

Rough Outline

Rough Outline

Applications

Applications

e Solving Systems of Differential Equations

* E.g. Finite Element Method (FEM)

* Data fitting
* Various tasks in machine learning

* E.9. clustering, support-vector machines, principal

component analysis

Run-time

Run-time

For a system of n equations:

Run-time

For a system of n equations:

Classical : polynomial in n

Run-time

For a system of n equations:
Classical : polynomial in n

Quantum : logarithmic in n

Run-time

For a system of n equations:
. . oY
Classical : polynomial in n O(n”)

Quantum : logarithmic in n O(Iis(log n)/e)

Run-time

For a system of n equations:
S L 3
Classical : polynomial in n O(n”)

Quantum : logarithmic in n 0, K,S(log n)/e)

Condition number

Run-time

For a system of n equations:

~

Classical : polynomial in n O(n?’)

Quantum : logarithmic in n 0, K,S(log n)/e)

Condition number

Sparsity

Run-time

For a system of n equations:

~

Classical : polynomial in n O(n?’)
Quantum : logarithmic in n 0, Rs(log n)/e)
Condition number \

Sparsity Accuracy

Summary

* \We saw some of the most frequently used gquantum algorithms
and sub-routines

« (Grover’s Search
 Phase Estimation
* Factoring
* Hamiltonian Simulation
* Matrix Inversion
 There are a lot more quantum algorithms, this is just a taster!

 Finding real-world applications is an ongoing challenge

