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Quantum Algorithms

* There are a lot of qguantum algorithms

* The '‘Quantum Algorithm Zoo’ cites 392 papers on
guantum algorithms

* Mostly, they solve specific mathematical problems

 E.g. Factoring, matrix inversion

* Often cleverly combine smaller guantum sub-
routines



This lecture

 Will focus on a few important algorithms / sub-routines:

* (Grover’s search, phase estimation, factoring, matrix inversion (HHL),
Hamiltonian simulation

 Mostly give high-level overviews

 Hopefully enough detail to be able to implement Grover’s search (and
understand what's happening!)

* For a more complete introduction:

* Ashley Montanaro’s lecture notes

 Ronald de Wolf’s lecture notes

* Quantum Computation and Quantum Information by Nielsen and Chuang


http://people.maths.bris.ac.uk/~csxam/teaching
http://www.homepages.cwi.nl/~rdewolf/qcnotes.pdf
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Polynomial speedup Exponential speedup

Grovers Search Integer Factoring

Quantum walks ~ Matrix Inversion

Graph algorithms |  Phase Estimation

Quantum Fourier Transform
Minimum finding
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Solves the ‘Unstructured Search’ problem

Works in the black box / query settmg

Frnd 1 marked |tem out of N |tems

- Classical Computer: N queries

- Quantum Computer: ~/N queries
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|¢> represents a column vector
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Reminder

We represent quantum states using ket notation

|¢> represents a column vector
<¢ | s its complex conjugate — a row vector

We represent an integer U as the quantum state ‘33>

e.g.

The inner product between two states/vectors is written as

(Y|¢) = cos b
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Operations on guantum states are via unitary operators
(Matrices that preserve the norm of the vector)

1 |1

7 —
/2 |1

E.g. the Hadamard gate:
.
_1_

H|0) =

HI|1) =

7(\0> +[1))
1

ﬁum = 1))

- We represent sequences of opera:

1) —

HF— 5
HF— 5 (

0) +
0) —

'lONS as Circults:

1)
1))

Given a state W> the probability of measuring \§b> S:

Pr[measure [¢)] = [(¢|1)) "
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Usl) o x) if x is the marked item
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2. An operator
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Ingredients:

1. An ‘Oracle’

Ug|z) —

- |£L’> Ifm is the marked item

| x> Otherwise

2. An operator

U0|£II> —>

—|CI3> it L — 0"

| iL’> Otherwise

3. Some Hadamards

He"

Using U we define the operator

D = H¥"UyH®"
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Why does this work?

With high probabillity, the
algorithm outputs m

Probability of measuring |m) = |(m|v)|?

T times

g = o — - — Hf
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Summary: Grovers search

- Grover’s search is very general!

-+ A'query’ might involving running some other

classical/quantum algorithm

- (Glves a generic square-root speedup
- But not always faster than classical!
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-+ An important qguantum computing primitive

- Often used as an ingredient in more complex algorithms:
- Integer factorisation
- Matrix inversion
+ Quantum counting

- Quantum walks
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Inverse quantum Fourier transform

Quantum Fourier transform (QFT)

QFT,,*
» Can be seen as a generalisation of
the Hadamard gate

* Formally:

QFTN\@:% N e v y)
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Inverse quantum Fourier transform

QFT !

Measure an estimate

{ # of the phase (J :
‘Controlled’ powers of [/ ’ 0 |
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Factoring

Arguably the most famous application of guantum computers
N =a X b
15 = 3 X 5

Important modern crypto-systems (e.g. RSA) rely on this
problem being intractable for computers.

But a quantum computer can solve it quickly!
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How quickly?
Recommended key size for RSA is 2048 bits
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How quickly?
Recommended key size for RSA is 2048 bits

227018012937850141935804051202045867410612359627665839070940218792151
714831191398948/0133091111044901683400949483846818299518041 7635079489
225907 749254660881 71879259465921026597046/0044981989909686203946001 /77
430944 738110569912941285428918808553627074076/0722593737 7726669734409
7736124333639/308051/630915068363107953126072395203652900321058488395
079814523072994171857157962974549950235053160409198591937180233074148
80446217922800831/6604093865634457103477/855345/71210805307363945359239
3265186603051504106096643731332367283153932350006793710/5419554373624
33248361242525945868802353916/66181532375855504886901432221349733

= 7 x 7

Best known classical algorithm : ~ 1 Billion Years

Shor’s algorithm : ~ 100 Seconds”

*For a quantum computer running at ~1GHz.
Source: “A Compare between Shor's quantum factoring algorithm and General Number Field Sieve”, Hamdi et al.
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5.3. Else, repeat from step 3
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Shor's Algorithm

Reduces the problem of factoring to the problem ot period
finding

Uses a quantum algorithm for fast period finding.

If Nis even, return =2

If N=p~k for p prime, return p FGS"’ Quantum algorl’rhm USIT'Ig

Randomly choose 7<g<N-1
3.1. If f=gcd(q,N)>1, return f Phase Estimation

4. Determine the order kof gmodulo N
4.1. If kis odd, repeat from step 3

5. Write k=2l and determine g/l mod N with T<r<N
5.1. It 1<f=gcd(r-1,N)<N, return f
5.2. It 1<f=gcd(r+1,N)<N, return f
5.3. Else, repeat from step 3

All other steps can be performed efficiently by a classical
computer.
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Given an n-bit integer:

1/3
Classical number field sieve : O(Qn )

Shor’s algorithm : O(TLS)

1 billion years
1 million years

1 thousand years
100 years
10 years

one'yeaf'w e
one month

o
:
=
=
.
C
c
T
B
9
o
o
8
Q
£
b

100 seconds _. -~

one second

Source: “A Compare between Shor's quantum factoring algorithm and General Number Field Sieve”, Hamdi et al.
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Hamiltonian Simulation

* In guantum mechanics, physical systems are described by
‘Hamiltonians'.

* For our purposes, these are Hermitian (4 = Af) matrices,
which we will write as H

| - The evolution of quantum systems is governed by |
{ Schrodinger’s equation- |

m—w( ) = HO)

'« When H doesn't ¢ " e er time, the solution to this |

| equation is f
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his Is a unitary matrix

i Hamiltonian Simulation:

I Given a Hamiltonian /1, construct a quantum circuit that |

approximates e Ut

There are a number of quantum algorithms that can do this
efficiently for certain types of Hamiltonian
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Why is this useful?

Physical systems are guantum mechanical

f we want to simulate them on a computer, we're going to
need a guantum one

Classical system Classical _conTnpu‘rer

Quantum system
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Quantum computer
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HHL

Named after Harrow, Hassidim, and Lloyd, who invented it in
2008

Attacks one of the most fundamental tasks in science —
solving systems of linear equations:

o L e,

': AR

= |
~ Solve for X |

Classically: Takes time polynomial in the size of the matrix

HHL “solves’ this problem in logarithmic time



HHL
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Input: b>,A

Output: quantum state

AX =D |



HHL

Input: b>, A

Output: quantum state .CC>

SO long as we can prepare |b> and only need to know global

oroperties of | ), this is useful.
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Rough Outline

A Hamiltonian Simulation

b) .

\Phase Estimation

Input:

A few ‘simple’ tricks
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Applications



Applications

e Solving Systems of Differential Equations

* E.g. Finite Element Method (FEM)

* Data fitting
* Various tasks in machine learning

* E.9. clustering, support-vector machines, principal

component analysis
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Run-time

For a system of n equations:

~

Classical : polynomial in n O(n?’)
Quantum : logarithmic in n 0, Rs(log n)/e)
Condition number \

Sparsity Accuracy



Summary

* \We saw some of the most frequently used gquantum algorithms
and sub-routines

« (Grover’s Search
 Phase Estimation
* Factoring
* Hamiltonian Simulation
* Matrix Inversion
 There are a lot more quantum algorithms, this is just a taster!

 Finding real-world applications is an ongoing challenge



