#gsharp « @MsftQuantum

Welcome!

While everyone settles in, feel free to get

started.
1 Install .NET Core SDK 1 Download the Quantum Katas
2 Install Visual Studio Code + Extension 2 Open a kata folder in VS Code
3 Install Project Templates 3 Run dotnet test

INSTALL GUIDE KATA DOWNLOAD

aka.ms/qgak-install aka.ms/quantum-katas

ing

learn

m Microsoft

Quantum Programming
THE QUANTUM DEVELOPMENT KIT

Christopher Granade Bettina Heim
Research SDE Senior SDE
Quantum Architectures and Computation Group, Microsoft

chgranad@microsoft.com beheim@microsoft.com

Why
Quantum
Programming?

Practical Cost Estimates

Why
Quantum
Programming?

Example: Quantum Chemistry of Fe.52

Used in reactions and energy transport in photosynthesis

CLASSICAL ALGORITHM Progress made through

INTRACTABLE
* Better quantum
algorithms
QUANTUM ALGORITHM (2012) ° I\/Iore Complete COST
YEARS estimates

* Improved classical
statistics

QUANTUM ALGORITHM (2015)

DAY

Why
QU A ﬂtu M Debugging Quantum Algorithms
Programming?

Test Explorer it bt it bt Lt L L L L L L L L L L L L L L L bbbt e X

“Debugging is twice as hard as S [i2- 2 search P~
writing the code in the first place.
Therefore, if you write the code as

Run All | Run.. ¥ | Playlist: All Tests ¥

cleverly as possible, you are, by ‘ g'ed fests (19 summary
deﬂ n ition, not smart enoug h to ® : ;_[Satat-eFllp_Test 6ms Last Test Run F.ailed (Total Run Time O:
debu it _ f:lSlsC.hange_Test 80 ms ® 14 Tests Failed
9 ® T13_SignFlip_Test 8 ms
—Brian Kern[g/’lan &) T14_AmplitudeChange_Test 9 ms
® T15_PhaseFlip_Test 8 ms

® T16_PhaseChange_Test 20 ms
® T17_BellStateChange1_Test 5 ms

- Ve ﬂ h a rd e r tO X) T18_BellStateChange2_Test 17 ms

® T19_BellStateChange3_Test 6 ms

d e b u g a P &) T21_TwoQubitGate1 Test 42 ms

&) T22_TwoQubitGate2_Test 28 ms

‘ t h -l: &) T23_TwoQubitGate3_Test 10 ms

a g O rl W | yO U ® T24_ToffoliGate_Test 11 ms

n / r u n i ® T25_FredkinGate_Test 14 ms
cant L.

Why
Quantum
Programming’?

Algorithms to Quantum
Applications

Computing at
every level

Developing
applications takes a
approach,
including both classical
and quantum logic

300K

100

30

10

0.3

0.1

0.03

0.01K

CRYOGENIC COMPUTER

CONTROL SW

UM
g L

The Quantum Development Kit

] |
File Edit View Project Build Debug Team Tool Architecture Test R Teok nalyze Window Help

e - B-aR# 9 e i ntur n jcrosoff nturm.Canon
DatabaseSearch.qs & X

A new language for quantum algorithms.

Open-source
ibraries/samples

Phase estimation, amplitude amplification,

. = QuantumSearch(
State preparat|0n, and more. nIterations : , markedQubit :
i databaseRegister: [: O
= {

Powerful dev tools Ty

StatePreparationOracle(markedQubit, databaseRegister);
Extensions for Visual Studio and Visual Studio) (idx in @..nIterations - 1){
Code ReflectMarked(markedQubit);

. ReflectStart(markedQubit, databaseRegister);
}
i

The Quantum Development Kit

NET Core e

X\ + v = E

é O 8 https://docs.microseft.com/en-us/quantum/libraries/algorithms?view=gsharp-previc ‘A’ “,AE Z.. LQ

Works with C#, F#, and VB.NET.

Filter by title

Cross-platform

Installation and validation

WlndOWS, maCOS, and LanX Quickstart - your first

quantum program

° ° ° Managing quantum
machines and drivers
Versatile simulation [geses
L | . | . v Q# standard libraries
ocal simulator and cost estimator. S
The prelude
Comprehensive o
modeling

Quantum algorithms

documentation

Error correction

Applications

Tectina and dehiianina

Quantum Phase Estimation

One particularly important application of the quantum Fourier transform is to learn the
eigenvalues of unitary operators, a problem known as phase estimation. Consider a

unitary U and a state |¢) such that |@) is an eigenstate of U with unknown eigenvalue

&,
Ulg) = d14) -

If we only have access to U as an oracle, then we can learn the phase ¢ by utilizing that
Z rotations applied to the target of a controlled operation propagate back onto the
control.

Suppose that V is a controlled application of U, such that

V(o) @) = [0) ® |¢)
and V(|1) ® |¢)) = " [1) @ |¢) .

Then, by linearity,

_ (0 ®19) + (1) @ |4))
— .

V(l+) ®[9)

We can collect terms to find that

V(1) ®4) - w ® 9

— (B() 1) ®16),

Why Q# Works

High-level
programming

First-class quantum operations, partial
applications, type parameters, and more.

Rich Standard
Libraries

Classical logic

Easy to implement hybrid quantum/classical
algorithms and adaptive measurement
protocols.

’9_] ReversibleLogicSynthesis.qs - Libraries - Visual Studio Code

File Edit Selection View Go Debug Tasks Help

Ijl ReversibleLogicSynthesis.qs % ¢ R © M

operation HiddenShiftProblem(perm : Int[], shift : Int) : Int {

li) body {

let n = BitSize(Length(perm));
mutable result = 9;

using (qubits = Qubit[2 * n]) {
@ let Superpos = ApplyToEachA(H, _);

let Shift = ApplyShift(shift, _);
let Synth = PermutationOracle(perm, TBS, _);
[.'] let PermX = ApplyToSubregisterA(Synth, Sequence(®, n - 1),

s
let PermY = ApplyToSubregisterA(Synth, Sequence(n, 2 * n

- 1)_, _)3

With(BindA([Superpos; Shift; PermY]), InnerProduct,
qubits);

With((Adjoint PermX), InnerProduct, qubits);
Superpos(qubits);

set result = Measurelnteger(LittleEndian(qubits));

e

¥ cgranade/temp & Libraries 11 @ - &7 <= Ln378,Col6 Spaces:4 UTF-8 CRLF Q# @ A1

The Quantum
Development Kit
Community

Feedback

quantum.uservoice.com

Documentation
github.com/MicrosoftDocs/quantum-docs-pr

Open Source Contributions
github.com/Microsoft/Quantum

Social Media
#qgsharp « @MsftQuantum

Visual Studio Code Visual Studio 201/

’il Operation.gs - QSharpApplication - Visual Studio Code X ﬁ QSharpApplication - Microsoft Visual Studio & Quick Launch (Ctrl+Q} P - (m] X
File § . _— File Edit View Project Build Debu Team Tools Architecture Test RTools Analyze Window Hel Chris Granade ~ [
L! o000 Operation.qs — QSharpApplication) 9 7 P
. e - B Debug ~ AnyCPU - b QsharpApplication ~ H _ | -
@ -\ Operation.qs - QSharpApplication - Visual Studio Code (] = g J AP - -
D File Edit Selection View Go Debug Tasks Help Operation.gs - Lication ¢ _: Solution Explorer > ix
Elnamespace QSharpApplication = LT e & »
;: Bl EXPLORER £ Operation.qs X e M - n Microsoft.Quantum.Canon; 7 & o o-sa@ k
D . X » open Microsoft.Quantum.Primitive; Search Solution Explorer (Ctrl+ P
4 OPEN EDITORS namespace QSharpApplication { i o :
- e . &7 Solution 'QSharpApplication’ (1 project)
p = Operation.gs open Microsoft -Quantum. Canon; E' spercistn Ea) 8 @) 4 4 QSharpApplication
: - : P B body {
4 QSHARPAPPLICATION Microsoft.Quantum.Primitive; essage("Hello, world!"); P i Dependencies
@ v bin } P C* Driver.cs
? operation Hello() : () { } D Operation.gs
» obj body { 2
[l: @ Driver.cs Message("Hello, world!"); 3
® £ Operation.gs }
o & QSharpapplication.csproj }
E }
ol [.I 11 |
Q0
° 0 A b PROJECTS
-
@O0AO0 Ssignin TODO:s [l QSharpApplication Ln11,Col1 Spaces:4 UTF-8withBOM CRLF Q# @ M o
Output Compiler Inline Report Compiler Optimization Report Error List Code Coverage Results
[Ready Ln 12 Col 1 Ch1 INS A Add to Source Control «

Open source for Windows 10, macOS, and World-class C# and Q# debugging on
Linux. Windows 10, unit testing, performance

Q#, C#, F#, C++, Python, Julia, LaTeX, Bash, analysts.
PowerShell, TypeScript and more. Works with Q#, C#, F#, VB.NET, C++, Python,
R, and more.

Visual Studio Code

’,‘u Operation.gs - QSharpApplication - Visual Studio Code

File S Operation.qs — QSharpApplication
@ —‘ Operation.qs - QSharpApplication - Visual Studio Code ()<]
D File Edit Selection View Go Debug Tasks Help
p @ EEEEEEEE = Operation.qgs %X ¢ M -
,O 4 OPEN EDITORS namespace QSharpApplication { =
? p = Operation.gs open Microsoft.Quantum.Canon;
?) T open Microsoft.Quantum.Primitive;
@ ? » bin operation Hello() : () {
» obj body {
[® C* Driver.cs Message("Hello, world!");
£ Operation.gs }
A QsharpApplication.csproj }

E E 11 |}

00‘ ﬁ DDDDDDDDD

@O0AO0 $signin TODO:s MQsharpApplication Ln11,Col1 Spaces:4 UTF-8withBOM CRLF Q# @ M

'll be showing Visual Studio Code today, but if you're using Windows 10 and would
prefer to use Visual Studio 2017, great!

Full documentation for using Visual Studio 2017 is available at aka.ms/quantum-katas.

Getting Started with Q#

Q# programs are made up of
operations and functions:

Quantum or nondeterministic
classical code that can interact
with and transform qubits.

Purely deterministic classical
code (e.g. Sin, Cos).

The Q# prelude includes built-
In operations and functions:

* X, Y, Z

*« H S

* R, R1, Rz
* M, Reset
 Message

Complete documentation at:

Q# Computation Mode|

Operations and functions can be called

- TARGET MACH
from a classical < Sallrl=

R -» Quantum Hardware
QUANTUM LIBRARY QUANTUM LIBRARY i '}I;'

Q# Operations
and Functions

QUANTUM APPLICATION

Q# Operations C# Host - » Cost Estimator
and Functions Program @

Q# Operations

and Functions

—+ Simulator E

Working with NET Core

Code in .NET Core is grouped Each project compiles to a
into . single cross-platform library or
program.
QSharpApplication/
(| e el s . QSharpApplication.csproj project file
Driver.cs classical (C#) source
Operations.gs quantum (Q#) source
x| Driver.cs
a8 gEE;E]rEOA:-SI?cation.csproj
m QSharpProject.csproj
bin/Debug/

QSharpApplication.dll compiled quantum app
obj/

Working with NET Core

Code in .NET Core is grouped Each project compiles to a
into ; single cross-platform library or
program.
QSharpApplication/
You may also see a solution file QSharpApplication.csproj oroject file
(* sln) Driver.cs classical (C#) source
'. ' Operations.gs quantum (Q#) source
This collects one or more related
projects for loading in Visual Studio
2017.
bin/Debug/

QSharpApplication.dll compiled quantum app
obj/

Working with NET Core

The tool provides a dotnet help
rich command line interface dotnet cmd --help
iInto .NET Core. T

EX PowerShell-6.0.0 X M d ke S anew p I’OJ e Ct

PS QSharpApplication> Get-Content .\Operation.gs A

namespace QSharpApplication { d b) ld
open Microsoft.Quantum.Canon; Ot n et u 1

open Microsoft.Quantum.Primitive;

—— - Downloads all the packages needed by a
operation Hello() : () { PS /Users/cgranade/QSharpApplication> 1s pI’OJeCt and runs -the COmpI|eI’

body { Driver.cs

" Operation.qgs
Message(He:l'lo) world thnnnAnrﬂ ?rn'}-inn cenrn-

) b rermin] dotnet run

} cgranade@ ~\..\QSharpApplication

) Directory: fhome/cgranade/source/Qsharphpplication Runs the project, rebuilding if necessary.
PS QSharpApplication> dotnet run gg;*é';\csll o Operation.gs

Hello) WOPld! arpapplication.csproj d t t t t

PS QSharpApplication> cgranade@ _ ~\..\QSharpApplication O n e e S

Runs any unit tests defined in a project.

dotnet add package

Installs a new package into the project.

Working with NET Core

The tool provides a dotnet help
rich command line interface dotnet cmd --help
into .NET Core. e (e

EX PowerShell-6.0.0 X M a keS a hew p I’OJ eCt

PS QShar‘pApplication‘f Ge:t-Content .\Operation.gs A X

T oren Micronote, Quantum.Cuncn; dotnet build
R Downloads all the packages needed by a
oper;gi;n{HeHO() () Ao giicgifzz/cgranade/QSharpApplication> 1s pI’OjeCt and runs the Compi|el’.

" Operation.qgs
MESSage(HellO, WOP].d QShnnnAnrﬂ-irn«i—inn renrn-i

) ’s e **e] dotnet run

} cgranade@ ~\..\QSharpApplication
} Directory: /home/cgranade/source/QSharpApplication Runs the prOJeCtl rebUIldlng If necessary.
PS QSharpApplication> dotnet run Driver.cs SpErEIOLEE

Hello. world! QSharpApplication.csproj
> :

PS QSharpApplication> cgranade@ _ ~\..\QSharpApplication

Runs any unit tests defined in a project.

dotnet add package

Installs a new package into the project.

Q# By Example: A Classic Hello

Let's start by seeing how Q# and C# work
together to make a complete program.

Types

For any types To, T1, T2, ..., Ty
Signed 64-bit integers. we can make 3 tuple:

(TOJ Tl: TZ: e) Tn)

We can also make arrays of any
Either true or false. type T, denoted T[].

Floating point numbers.

Either Zero or One. (Result[], (Pauli, Pauli[]))
(Int, Bool)[]

Either Paulil, PauliX, Pauliy, or PauliZ.
(Int[], Double)

A sequence of integers.

Diagnostic message.

A Bit About S

Q# allows us to interact with
quantum data in a variety of
ways:

- Prepare fresh qubits in |0).

- Transform quantum data with
built-in operations.

- Measure qubits to get back
classical data.

Example
We can get random classical
bits by:

« Starting with a fresh qubit.

 Using the H operation to
orepare superposition.

« Measuring and collapsing the
qubit to either |0) or |1).

Representing States and Operations

Qubit states can be represented as vectors,

— |1 — |0
0=l 1w=]9
Operations then transform qubit states by matrix

multiplication.

£.Q.: T 0
H = [1 1]/\/5, T = im | .
1 -1 0 e%

CONCEPTUAL INTRODUCTION AT :
aka.ms/quantum-docs/the-qubit

Q# By Example: QRNGs

Let's make things quantum by generating
some random numbers using the
|+) :== (|O) + [1)) / V2 state.

Example: Qrng

operation NextRandomBit() : Result {

body {
mutable result = Zero;
using (qubits = Qubit[1]) { // Prepare in |0).
H(qubits[0]); // H|@) = |+).
set result = M(qubits[@]); // Measure (0].
Reset(qubits[0]); // Reset to |0).
}
return result; // Return to
} // classical host.

Example: Qrng

operation NextRandomBit() : Result {

body {
mutable result = Zero;
using (qubits = Qubit[1]) { // Prepare in |0).
H(qubits[@]); // H|@) = |+).
set result = M(qubits[0]); // Measure (90].
Reset(qubits[0]); // Reset to |0).
}
return result; // Return to
} // classical host.

States In Q#

The Qrng example points at
two different ways of thinking
about quantum operations:

+) = H |0)

H(qubit);

In Q#, we program with qubits,
and let the target machine
define how to represent states.

Each target machine might
define states differently.

« Local simulator: state vector
« Trace simulator: tally counter
« Actual hardware: device |ID

By working with qubits, code is
reusable across all targets.

Heisenberg vs Schrodinger Programming

Problem: Solution:
How do we describe states Think of operations as
when states aren’t in Q#7? programs which prepare states
when given |0).
10y +11)
I+) = . . .
_ HIO\)E Operations are first-class in Q¥#,
SO we can pass them as values.
. |00> + |11> (More on this later.)
|Boo) = "D

= CNOT H |00)

Allocating and Using Qubits
operation NextRandomBit() : Result {
mutable result Zero;

using (qubits = Qubit[1]) { // Prepare in |0).
H(qubits[0]); // H|@) = [+).
set result = M(qubits[0]); // Measure (90].
Reset(qubits[0]); // Reset to |0).
}
return result; // Return to
} // classical host.

Representing Multiple Qubits

For multiple qubits, state vectors have an entry for every bitstring,

| O] 0 0
_ |0 _ |1 10 1o
0] 0] 0] 1]
Operations can be written as matrices on these states. E.g.,
1 0 0 O
101 0 O
CNOT = 00 0 1l°
0 0 1 0.

CONCEPTUAL INTRODUCTION AT : :
aka.ms/quantum-docs/multiple-qubits

Q# By Example: Entanglement

We now have everything we need to
make and measure pairs of entangled
qubits.

Q# By Example: Teleport |

Q# can help us think conceptually about
algorithms.

What is a program?

#include <stdio.h>

main()

1
printf("hello, world\n");

}

$ clang hello.c
$./a.out
hello, world

What is a program?

- A description of how to implement a computational task.

- Interpreted by a compiler to produce a lower-level
program.

- Interpreted by a processor to run the program.

Description and interpretation are inherently about
communication — hence the need for languages.

"We dissect nature along
lines laid down by our
native language’

—Benjamin Lee Whort,
inguist

‘It programmers think in
programming
anguages, they must
influence thoughts as
much as natural
anguages do.’

f/
—Yukihiro Matsumoto, &
lead designer of Ruby ‘f

-

h‘. ".«i..; | :

L

laas

Example: Four Views of Iteration
for (int 1 = 0; i < n; i++) { MOV c¢cx,10

/* .. */ loop:
) o
dec cxX
for element in array: # .. jnz loop

map(fn, array)

Fach expresses same idea, but communicates a different focus:

e.g.. architecture-specific implementation, data structures, or
composition.

We dissect
algorithms along lines
aid down by our
programming
anguages.

Q# can help us
conceptually about
algorithms.

Case Study: Conjugating With Unitaries

Common guantum algorithm concept:
uvuy?

We want to make it easier to think in terms of this concept:
let PhaseIncrement = With(QFT, Increment);

Let's explore the features we need to support conceptual
thinking.

FuNctors

// U* 1s an example of the adjoint functor.
operation EPR(left : Qubit, right : Qubit) : () {
body {
H(left);
(Controlled X)([left], right);
}

adjoint auto;

¥

// Can undo the operation with (Adjoint EPR).

Example: With

operation WithCA(
outer : (Qubit[] => () : Adjoint),
inner : (Qubit[] => () : Adjoint, Controlled),
target : Qubit[_

) (O A
body A
outer(target); // U
inner(target); /] V

(Adjoint outer)(target); // U*
}

adjoint auto; controlled auto;
controlled adjoint auto;

Case Study: Conjugating With Unitaries

We now have a language for clearly expressing the UVU”
concept.

Let's go further by reducing the cognitive load imposed by
that expression.

e.g.. Currently, a user has to think about the type Qubit[]
to use With.

Type-Parameterized Functions and Operations

// Using type parameters, we can express
// that a concept applies across different types.
function Fst<'T, 'U>(pair : ('T, 'U)) : 'T {

let (first, second) = pair;

return first;

¥

let pair = (3, "Hello"); // pair : (Int, String)
Fst(pair); // Returns 3.

Function Types

Let 'T and 'U be any two

types.

Then 'T -> "U s a function
that takes 'T as an input and
returns 'U.

'T and ('T) are exactly the

same type for all 'T.
Thus, all functions take and

return a single tuple.

function Map<'T, 'U>(fn : 'T -> ' in : 'T[]) : "U[] {
let n = Length(arr);
mutable out = new 'U[n];

for (idx in @..n - 1) { set out[idx] = fn(in[idx]); }
return out;

Operation Types

Similarly, 'T => "Uis an Adjoint and Controlled can be
operation that takes 'T as an specified as well.
Input and returns 'U. ('T => () : Adjoint, Controlled)

operation ApplyToEach<'T>(op : ('T => ()), targets : 'T[]) : () {
body A

for (idx in @..Length(targets) - 1) { op(targets[idx]); }

¥

}
ApplyToEach(H, register);

Passing States as Operations

operation QuantumSearch(nIterations : Int, markedQubit : Qubit,
databaseRegister: Qubit[]) : () {

body {
StatePreparationOracle(markedQubit, databaseRegister);
// Loop over Grover iterates.
for (idx in @..nIterations - 1) {
ReflectMarked(markedQubit);
ReflectStart(markedQubit, databaseRegister);

) We can't directly pass @), but we can
pass an operation O that prepares |()
h when given qubits in |0).

FULL SAMPLE AT

aka.ms/quantum-samples/DatabaseSearch

Q# By Example: Teleport |

We can make teleport much more
reusable with first-class operations.

Functional Programming

function Add(a : Int, b : Int) : Int {

return a + b;

} The same features also
make it easier to express
some kinds of classical

_ . processing in terms of
let Sum = Fold(Add, 0, _); compositionand
Sum([3; 4; 5]); // Returns 12. combinations of functions.

Map(Add, Zip([1; 2; 3], [1@; 11; 12]));
// Returns [11; 13; 15].

Partial Application

operation PhaseEst(We can make new

oracle : (Qubit[] => ()), functions and operations

. : by specifying a subset of
prep : (Qubit[] => ()), the inputs to a function or
target : Qubit[] operation.

: Doubl .
) uble { } This lets us quickly

combine existing callables
PhaseEst(to work well together.

Exp(theta, [PauliZz],),
ApplyToEach(H,),

target
)

Partial Application as Control Flow |

We can implement new functional constructs with partial

application.

function ComposeImpl<'T, 'U, 'V>
(outer : ('U -> 'V), inner
{ return outer(inner(target)); }

function Compose<'T, 'U, 'V>
(outer : ('U -> 'V), inner
return ComposelImpl(outer, inner,

: ('T -> 'U), target : 'T) :

: ('T -> 'U)): ('T -> 'V) {
)

Partial Application as Control Flow |l

Functions can also return partially applied operations,

representing classical reasoning about the instructions given
to a quantum device.

operation ApplyTwice<'T>(op : 'T => (), target : 'T) : () {
body { op(target); op(target); }
¥

function SquareOp<'T>(op : 'T => ()) : ('T => ()) {
return ApplyTwice(op,);
} SquareOp hastype ('T => ()) -> ('T => ()).

Example: With

operation WithCA<'T>(
outer : ('T => () : Adjoint),
inner : ('T => () : Adjoint, Controlled),

target : 'T
) (O A
body A
outer(target); // U
inner(target); /] V

(Adjoint outer)(target); // U*
}

adjoint auto; controlled auto;
controlled adjoint auto;

Q# By Example: Teleport Il

We can quickly combine different
operations together using partial
application.

Diagnosing Quantum Programs

or How To Keep Moving When Everything Seems Broken

Quantum programming is still

programming: mistakes and bugs still
happen.

Let’s look at a few ways to find and Tix
bugs!

Step

Many bugs come down
to mismatched
assumptions and
conventions.

Checking back with the
docs can help.

OPERATION AND FUNCTION REFERENCE

aka.ms/gsharp-ref

=

O

Filter by title

> Quantum computing

concepts
Installation and validation

Quickstart - your first
quantum program

> Managing quantum

machines and drivers

Quantum development
techniques

v Qi standard libraries

0SS licensing
The prelude

Higher-order control
flow

Data structures and
modeling

Quantum algorithms

Characterization
Error correction
Applications

Testina and dehiianinn

m Qi# standard libraries - ¢

X |+ v - O

docs.microsoft.com ﬁﬁ’ 7:‘5 & @

Quantum Phase Estimation

One particularly important application of the quantum Fourier transform is to learn the
eigenvalues of unitary operators, a problem known as phase estimation. Consider a

unitary U and a state |¢@) such that |@) is an eigenstate of U with unknown eigenvalue

P,
Ulg) = o14).

If we only have access to U as an oracle, then we can learn the phase ¢ by utilizing that
Z rotations applied to the target of a controlled operation propagate back onto the
control.

Suppose that V is a controlled application of U, such that

V(10) @ 1¢)) = |0) ® [¢)
and V(|1) ® |¢)) = € [1) ® |¢) .

Then, by linearity,

(10) ® |¢) +e?(|1) ® |¢))
7 .

V(+) @ |¢) =

We can collect terms to find that

|0) + e [1)
Vv - - 7
(1) ®14)) 7 ® [#)

— (R4 ® 1),

‘printf’ Debugging

Message : String -> ()
emits diagnostics to C# driver. $"{expr}" inserts diagnostic

By default, messages are information about expr into a
orinted to the console. String for use with Message.

Especially useful for finding
classical mistakes.

function Hello() : () {
let x = 42;

Message($"Hello, {x}."); // Prints “Hello, 42.” to the console.

Assertions About States

Simulators need not obey the
No-Cloning Theorem. Observed effects must be

The Assert* operations compatible with their being an
executed on a simulator kill a Q# observer.

program if it would produce the

‘wrong” measurement.

u (msg);
TeleportMessage (msg, there);

(Adjoint u)(there); We used AssertQubit earlier

to test the validity of our
teleport operation.

AssertQubit(Zero, there);

The Choi—Jamitkowski [somorphism

Quantum processes are
isomorphic to quantum states,

iG] < i)
Define J(/) by acting /A on half
of an entangled pair.

FULL SAMPLE AT

operation IdentityTeleport(qg : Qubit[]) : () {
body { using (aux = Qubit[1]) {
Teleport(q[@], aux[@]);
SWAP(q[@], aux[@]);

F}
}

operation TeleportationTest() : () {

body {
// Process assertions are a
// special case of state assertions.
AssertOperationsEqualReferenced(
IdentityTeleport, NoOp, 1);

aka.ms/quantum-samples/UnitTesting

Dumping Diagnostic Information

DumpMachine<'T> : 'T -> () Information is
instructs target machines to target machine—dependent:
report their diagnostic

e QuantumSimulator reports

information. state vectors.

The only observable effect of functions is their return

Jalue, * QCTraceSimulator does not
DumpMachine and Message return (), which has only I’epOI’t aﬂy additiOﬂa| iﬂfO.
one valid value ().
This allows for calls to be stripped with no observable « Future machines may provide
SRR different information entirely
DumpRegister<'T> : (e.g.: internal IDs for Qubits).

('T, Qubit[]) -> ()
reports diagnostic information
about a subset of qubits.

Q# By Example: Diagnostics

Let's see DumpMachine in action.

Step-By-Step Debugging in Visual Studio 2017

. . ﬂ QuantumDevelopmentKitDemos (Debugging) - Microsoft Visual Studio n':" Quick Launch (Ctrl+Q P - =] X
\/I S u a St u | O ; O ; g O e S File Edit View Project Build Debug Team Tools Architecture Test RTools Analyze Window Help Chris Granade ~
. . . s M P Continue ~ 57 [) 777
fu rt h e r u S I n d | a n O Stl C Process: [41072] dotnet.exe - Thread: [65980] Worker Thread R ¢ :
/
Tasks
TeleportArbitrary.qs

ce Microsoft.Quantum.Demos.Teleportation {
n Microsoft.Quantum.Primitive;
Microsoft.Quantum.Canon;

en Microsoft.Quantum.Extensions.Testing;

information exposed by target
machines to help find bugs.

bk
5|00 Jnysoubelq

Elnamespa

1210|dx3 159

BI operation TeleportArbitraryState (u : (Qubit =» () : Adjoint)) : () {
El body {
- Can step between C# and [TR
let there = register [1];

Q# code
. TeleportMessage (msg, there);

(Adjoint u)(there);

[C) | AssertQubit(Zero, there);

° Loca | S S h OWS th e p rO ba bl | Ity Message ("The anthropic principle says we teleported a prepared state successfully! :) ");

ApplyToEach(Reset, register);

1z10/dx3 wes) setojdxq uonnjos

m

of obtaining Zero for e

hypothetical measurements. ER—— -
- Debugger and Test Explorer e

integrate to help fix unit

tests.

Compiler Inline Report Compiler Optimization Report Call Stack Breakpoints Exception Settings Command Window Immediate Window Output Error List

[Ready 4+ 0 £ 1 @ demos %' cgranade/dump-demo ~

The Quantum Katas

_et's get hands-on!

B 1 Download the Quantum Katas
Fach kata has a Tasks.gs

file with blanks to fill in with
your code.

2 Open QuantumKatas.vscode-workspace.

RUH dotnet -tes-t J[O 3 Run Tasks: Run Test Task from the
Command Palette.
check your answers.
Six katas to choose from —
pick one and have fun!

KATA DOWNLOAD AND INSTRUCTIONS
aka.ms/quantum-katas

The Quantum Katas

 If you get stuck in Visual Studio 1 Download the Quantum Katas

Code, search the Command Palette.
Ctrl + Shift + P or 3 + Shift + P

ReferenceImplementation.qgs 2

: , Open QuantumKatas.vscode-workspace.
has the solutions — don't look P

unless you get really stuck!
Your quick references have a lot of 3 Run Tasks: Run Test Task from the

useful information, including Command Palette.

function and operation summaries .
and links to documentation. Six katas to choose from —

pick one and have fun!

KATA DOWNLOAD AND INSTRUCTIONS
aka.ms/quantum-katas

The Quantum Katas

OOOOOOOOOOOO

AAAAAAAAAAAAAAAAAAAAAAAA

eeeeeeeeeeeee
README.md StateFlip (q :

EEEEEEEEE

4 Superposition

4 Teleportation

Ln1,Col1 Spaces:4 UTF-8withBOM LF Q#

KATA DOWNLOAD AND INSTRUCTIONS
aka.ms/quantum-katas

1 Download the Quantum Katas

2 Open QuantumKatas.vscode-workspace.

3 Run Tasks: Run Test Task from the
Command Palette.

Six katas to choose from —
pick one and have fun!

The Quantum Katas

4 OPEN EDITORS Tasks: Run Test Task

4 QUANTUMKATAS (W Tasks: Configure Default Test Task

%%%%%

EEEEEEEEEEEEE

4 Superposition

Pmaster S @040 Ln1,Col1 Spaces:4 UTF-8withBOM LF Q#

KATA DOWNLOAD AND INSTRUCTIONS
aka.ms/quantum-katas

1 Download the Quantum Katas

2 Open QuantumKatas.vscode-workspace.

3 Run Tasks: Run Test Task from the
Command Palette.

Six katas to choose from —
pick one and have fun!

The Quantum Katas

AAAAAAAAAAAAAAAAAAAAAAAA

eeeeeeeeeeeee
README.md StateFlip (q :

EEEEEEEEE

4 Superposition

4 Teleportation

Ln1,Col1 Spaces:4 UTF-8withBOM LF Q#

KATA DOWNLOAD AND INSTRUCTIONS
aka.ms/quantum-katas

1 Download the Quantum Katas

2 Open QuantumKatas.vscode-workspace.

3 Run Tasks: Run Test Task from the
Command Palette.

Six katas to choose from —
pick one and have fun!

The Quantum Katas

0 ITORS
p 15Ks. Q)
4 QUANTUMKATAS (WORKSPACE]
4 Basic Gates
? README.md
= Tasks.gs
® 4 Deutsch—Jozsa Algorithm
README.md
E.] = Tasks.gs
4 Measurements
README.md StateF lip (q :) 2 ()
= Tasks.qs {
4 QEC: Bit-flip Code {
README.md
£ Tasks.gs

4 Superposition
README.md
= Tasks.gs
4 Teleportation
README.md

Tasks.gs Total tests: 14. Passed: @. Failed: 14. Skipped: @.

Test execution time: 1.8839 Seconds
The terminal process terminated with exit code: 1

ﬁ' Terminal will be reused by tasks, press any key to close it

Ln1,Col1 Spaces:4 UTF-8withBOM LF Q#

Pmaster & ©0AO0

KATA DOWNLOAD AND INSTRUCTIONS
aka.ms/quantum-katas

TERMINAL 1 Task-test(Bas 4+ @ ~ [x

1 Download the Quantum Katas

2 Open QuantumKatas.vscode-workspace.

3 Run Tasks: Run Test Task from the
Command Palette.

Six katas to choose from —
pick one and have fun!

The Quantur

A

Developmen
Community

- Kt

Many ways to get involved!

Feedback

guantum.uservoice.com

Documentation

github.com/MicrosoftDocs/quantum-docs-pr

Open Source Contribu
github.com/Microsoft/Quantum

Social Media

#qgsharp « @MsftQuantum

tions

