
Programming quantum games
(and other highlights from the QISKit tutorial)

jwo@zurich.ibm.com
twitter.com/decodoku

James R. Wootton

Quantum Technology, IBM Research - Zurich

§ When you start programming, you start small

– Make something happen

– Print to screen

– Start interacting things

§ You won’t save the world in your first program!

Your first quantum program

‘Hello World’

§ ‘Hello World’ is the classic example

§ Just make a program that prints some text to screen

print(‘Hello World’)

‘Hello World’

§ ‘Hello World’ is the classic example

§ Just make a program that prints some text to screen

(or toast)

print(‘Hello World’)

flickr.com/oskay

‘Hello World’

§ Do this with a quantum computer

§ Use the fact that computers encode in binary

1. Convert ‘Hello World’ to binary

2. Encode the binary in qubits

3. Extract the string from qubits

4. Convert binary to letters

5. Print to screen

§ Requires 88 qubits

§ Works just fine without the quantum part

0
1
0
0
1
0
0
0

Quantum ‘Hello World’

§ For :) we need only 16 qubits

§ Can be done on the cloud with an IBM device

§ To use the quantumness, we can superpose emoticons!

§ Where the bit strings agree, this is done as before

0
0
1
0
1
0
0
1

;) = 0011101100101001
8) = 0011100000101001

Quantum ‘Hello World’

§ Where they differ, we need a superposition

§ H creates a superposition of 0 and 1

§ Two create a superposition of 00, 01, 10 and 11

– Not what we want: we need correlations

;) = 0011101100101001
8) = 0011100000101001

§ Use one H for the superposition,

and a CNOT to ‘spread’ it

00 → 00 + 10 → 00 + 11

Quantum ‘Hello World’

§ Measuring a superposition gives a random outcome

§ We can use the statistics to create an image

shots=1024, { ‘:)’:501, ‘8)’:523 }

§ Can show us the nature of a real device

Quantum ‘Hello World’

§ Source code on QISKit tutorial

§ ‘Making a quantum computer smile’ on QISKit blog

§ Gamified guide to creating your own superposition with ‘Hello Quantum’

§ What’s your suggestion for a quantum ‘Hello World’?

ibm.biz/qiskit-tutorial

ibm.biz/quantum-emoticon

ibm.biz/helloquantum-cil

Battleships with partial NOT gates

§ Another simple application: games

§ Take a simple piece of quantum programming

§ Use it to implement a game mechanic

§ For example: qubits allow partial NOT gates

qc.y(qr[0]) # a NOT

qc.ry(np.pi, qr[0]) # also a NOT

qc.ry(np.pi/2, qr[0]) # half a NOT

qc.ry(np.pi/3, qr[0]) # third of a NOT

Battleships with partial NOT gates

§ Let’s make a variant of Battleships

- All ships take up single position
- Different ships need different number of hits to sink

§ Classically, we could use a Bool and a NOT

to implement a single hit ship

§ Multi hit ships would need an Int

§ Quantumly, we can do both with a qubit

damage = False # initially intact

damage = not damage # attack implemented with
NOT

if damage:
print('ship destroyed')

max_damage = 3
damage = 0 # initially intact

damage += 1 # attack implemented with
addition

if damage==max_damage:
print('ship destroyed')

Battleships with partial NOT gates

§ Qubits are the quantum version of a Bool

§ The quantum gates X and Y serve as the NOT

§ We can also do fractional versions

§ These visit superposition states between 0 and 1

qr = QuantumRegister(1) # initially intact

qc.ry(np.pi/max_damage, qr[0]) # attack with partial NOT

qc.measure(qr,cr)
job = execute(qc,backend)

damage = job.result().get_counts()['1']/shots
if damage==1.0:

print('ship destroyed')

§ Multi-hit ships can be implemented by dividing up the journey from 0 to 1

Quantum Battleships

§ Now another a bigger piece of quantum programming: measuring a Bell pair

§ Could be used to make a size 2 ship in Battleships

qc.h(qr[0])
qc.cx(qr[0], qr[1]
)
qc.ry(np.pi/4,
qr[1])
qc.h(qr[1])

qc.measure(qr,cr)

qc.h(qr[0])
qc.cx(qr[0], qr[1]
)
qc.ry(np.pi/4,
qr[1])
qc.h(qr[1])

qc.h(qr[0])

qc.measure(qr,cr)

qc.h(qr[0])
qc.cx(qr[0], qr[1]
)
qc.ry(np.pi/4,
qr[1])
qc.h(qr[1])

qc.h(qr[1])

qc.measure(qr,cr)

qc.h(qr[0])
qc.cx(qr[0], qr[1]
)
qc.ry(np.pi/4,
qr[1])
qc.h(qr[1])

qc.h(qr[0])
qc.h(qr[1])

qc.measure(qr,cr)

85% agreement 85% agreement 85% agreement 12% agreement

Quantum Battleships / Battleships with partial NOT gates

§ Source code on QISKit tutorial

§ ‘How to program a quantum computer’ on QISKit blog

§ Gamified guide to creating your own Bell states with ‘Hello Quantum’

§ List of games for quantum computers

ibm.biz/qiskit-tutorial

ibm.biz/quantum-battleships

ibm.biz/helloquantum-cil

ibm.biz/qc-games

‘Hello Quantum’ and more

§ IBMers are here to help you get started with quantum
- ‘Hello Quantum’ for everyone

- ‘Hello Quantum’ for programmers

- QISKit Slack

- QC Stack Exchange

§ And to help you get started with QISKit
qiskit.org
qiskit.slack.com

ibm.biz/helloquantum

ibm.biz/helloquantum-cil

quantumcomputing.stackexchange.com

ibm.biz/join-qiskit-slack

Thanks for listening

ibm.biz/qconfig-setup

Setup your IBM account for tomorrow!

