Quantum Information for Developers, 11-14 September 2018

Advanced track

* Can quantum computing **break** the primitives?

- * Can quantum computing **break** the primitives?
- * Can quantum computing **improve** the primitives?

- * Can quantum computing **break** the primitives?
- * Can quantum computing **improve** the primitives?
- * What **quantum applications** are desirable?

- * Can quantum computing **break** the primitives?
- * Can quantum computing **improve** the primitives?
- * What **quantum applications** are desirable?

Outline

- Primitives:
 - I. Encryption (privacy)
 - II. Authentication
 - III. Secret sharing
- * Application:
 - I. Cloud computing

I. encryption II. authentication III. secret sharing Application: cloud computing

Primitive I: encryption

* correct: m' = m

- * correct: m' = m
- * efficient: Enc and Dec are polynomial-time

- * correct: m' = m
- * efficient: Enc and Dec are polynomial-time
- * private: c hides all the information about m

Example: one-time pad (^{also known} _{cipher})

Example: one-time pad (^{also known} _{as Vernam})

 $m = 0 \quad 1 \quad 1 \quad 0 \quad 1 \quad 0 \quad 0$

Example: one-time pad (^{also known} _{cipher})

m =01101000k =00011010

Example: one-time pad (as Vernam cipher

* Key k is selected uniformly random (independent of m)

* Key k is selected uniformly random (independent of m)

* Key k is selected uniformly random (independent of m)

- * Key k is selected uniformly random (independent of m)
- Dec is the same as Enc

- * Key k is selected uniformly random (independent of m)
- * Dec is the same as Enc

- * Key k is selected uniformly random (independent of m)
- * Dec is the same as Enc

- * Key k is selected uniformly random (independent of m)
- * Dec is the same as Enc

Probability-theoretic definition of privacy:

$$\forall m \forall c : \Pr[M = m \mid C = c] = \Pr[M = m]$$

Probability-theoretic definition of privacy:

$$\forall m \forall c : \Pr[M = m \mid C = c] = \Pr[M = m]$$

* Probability-theoretic definition of privacy:

$$\forall m \forall c : \Pr[M = m \mid C = c] = \Pr[M = m]$$

Probability-theoretic definition of privacy:

$$\forall m \forall c : \Pr[M = m \mid C = c] = \Pr[M = m]$$

Probability-theoretic definition of privacy:

$$\forall m \forall c : \Pr[M = m \mid C = c] = \Pr[M = m]$$

More formally: 'privacy'

Probability-theoretic definition of privacy:

$$\forall m \forall c : \Pr[M = m \mid C = c] = \Pr[M = m]$$

* Semantic definition of privacy:

* <u>Claim</u>: $\forall m \forall c : \Pr[M = m \mid C = c] = \Pr[M = m]$

- * <u>Claim</u>: $\forall m \forall c : \Pr[M = m \mid C = c] = \Pr[M = m]$
- * <u>Proof</u>: Fix *m* and *c*. Using Bayes' theorem:

- * <u>Claim</u>: $\forall m \forall c : \Pr[M = m \mid C = c] = \Pr[M = m]$
- * <u>Proof</u>: Fix *m* and *c*. Using Bayes' theorem: $Pr[M = m \mid C = c] = \frac{Pr[C = c \mid M = m] \cdot Pr[M = m]}{Pr[C = c]}$

- * <u>Claim</u>: $\forall m \forall c : \Pr[M = m \mid C = c] = \Pr[M = m]$
- * <u>Proof</u>: Fix *m* and *c*. Using Bayes' theorem: $Pr[M = m \mid C = c] = \frac{\Pr[C = c \mid M = m] \cdot \Pr[M = m]}{\Pr[C = c]}$

- * <u>Claim</u>: $\forall m \forall c : \Pr[M = m \mid C = c] = \Pr[M = m]$
- * <u>Proof</u>: Fix *m* and *c*. Using Bayes' theorem: $\Pr[M = m \mid C = c] = \frac{\Pr[C = c \mid M = m] \cdot \Pr[M = m]}{\Pr[C = c]}$ $\forall k \Pr[K = k] = 2^{-\ell}$

- * <u>Claim</u>: $\forall m \forall c : \Pr[M = m \mid C = c] = \Pr[M = m]$
- * <u>Proof</u>: Fix *m* and *c*. Using Bayes' theorem: $\Pr[M = m \mid C = c] = \frac{\Pr[C = c \mid M = m] \cdot \Pr[M = m]}{\Pr[C = c]}$ $\forall k \Pr[K = k] = 2^{-\ell}$ $\forall k \Pr[K = k | M = m] = 2^{-\ell}$

- * <u>Claim</u>: $\forall m \forall c : \Pr[M = m \mid C = c] = \Pr[M = m]$
- * <u>Proof</u>: Fix *m* and *c*. Using Bayes' theorem: $Pr[M = m \mid C = c] = \frac{Pr[C = c \mid M = m] \cdot Pr[M = m]}{Pr[C = c]}$ $\forall k \Pr[K = k] = 2^{-\ell}$ $\forall k \Pr[K = k | M = m] = 2^{-\ell}$ $\exists ! k : m \oplus k = c$

- * <u>Claim</u>: $\forall m \forall c : \Pr[M = m \mid C = c] = \Pr[M = m]$
- * <u>Proof</u>: Fix m and c. Using Bayes' theorem: $\Pr[M = m \mid C = c] = \frac{\Pr[C = c \mid M = m] \cdot \Pr[M = m]}{\Pr[C = c]}$ $\forall k \Pr[K = k] = 2^{-\ell}$ $\forall k \Pr[K = k \mid M = m] = 2^{-\ell}$ $\exists ! k : m \oplus k = c$ $\Pr[C = c \mid M = m] = 2^{-\ell}$

- * <u>Claim</u>: $\forall m \forall c : \Pr[M = m \mid C = c] = \Pr[M = m]$
- * <u>Proof</u>: Fix m and c. Using Bayes' theorem: $\Pr[M = m \mid C = c] = \frac{\Pr[C = c \mid M = m] \cdot \Pr[M = m]}{\Pr[C = c]}$ $\forall k \Pr[K = k] = 2^{-\ell}$ $\forall k \Pr[K = k \mid M = m] = 2^{-\ell}$ $\exists ! k : m \oplus k = c$ $\Pr[C = c \mid M = m] = 2^{-\ell}$

- * <u>Claim</u>: $\forall m \forall c : \Pr[M = m \mid C = c] = \Pr[M = m]$
- * <u>Proof</u>: Fix *m* and *c*. Using Bayes' theorem: $\Pr[M = m \mid C = c] = \frac{\Pr[C = c \mid M = m] \cdot \Pr[M = m]}{\Pr[C = c]}$ $\forall k \Pr[K = k] = 2^{-\ell}$ $\forall k \Pr[K = k \mid M = m] = 2^{-\ell}$ $\exists ! k : m \oplus k = c$ $\Pr[C = c \mid M = m] = 2^{-\ell}$

$$\operatorname{Pr}[C=c] = \sum_{m'} \Pr[M=m'] \cdot \Pr[C=c|M=m'] =$$

- * <u>Claim</u>: $\forall m \forall c : \Pr[M = m \mid C = c] = \Pr[M = m]$
- * <u>Proof</u>: Fix m and c. Using Bayes' theorem: $\Pr[M = m \mid C = c] = \frac{\Pr[C = c \mid M = m] \cdot \Pr[M = m]}{\Pr[C = c]}$ $\forall k \Pr[K = k] = 2^{-\ell}$ $\forall k \Pr[K = k | M = m] = 2^{-\ell}$ $\exists ! k : m \oplus k = c$ $\Pr[C = c | M = m] = 2^{-\ell}$

- * <u>Claim</u>: $\forall m \forall c : \Pr[M = m \mid C = c] = \Pr[M = m]$
- * <u>Proof</u>: Fix m and c. Using Bayes' theorem: $\Pr[M = m \mid C = c] = \frac{\Pr[C = c \mid M = m] \cdot \Pr[M = m]}{\Pr[C = c]}$ $\forall k \Pr[K = k] = 2^{-\ell}$ $\forall k \Pr[K = k | M = m] = 2^{-\ell}$ $\exists ! k : m \oplus k = c$ $\Pr[C = c | M = m] = 2^{-\ell}$

Long keys: how do Alice and Bob share the key?
 (another primitive: key distribution)

- Long keys: how do Alice and Bob share the key?
 (another primitive: key distribution)
- * Key is usable only once:

- Long keys: how do Alice and Bob share the key?
 (another primitive: key distribution)
- * Key is usable only once:

SEND CASH

- Long keys: how do Alice and Bob share the key?
 (another primitive: key distribution)
- * Key is usable only once:

- Long keys: how do Alice and Bob share the key?
 (another primitive: key distribution)
- * Key is usable only once:

- Long keys: how do Alice and Bob share the key?
 (another primitive: key distribution)
- * Key is usable only once:

- Long keys: how do Alice and Bob share the key?
 (another primitive: key distribution)
- * Key is usable only once: $(m_1 \oplus k) \oplus (m_2 \oplus k) = m_1 \oplus m_2$

* Computational security: message is not hidden, but takes a lot of resources (time, electricity) to compute

- * Computational security: message is not hidden, but takes a lot of resources (time, electricity) to compute
- * Quantum computers can compute it faster!

- * Computational security: message is not hidden, but takes a lot of resources (time, electricity) to compute
- * Quantum computers can compute it faster!
- * 2 ways to go:

- * Computational security: message is not hidden, but takes a lot of resources (time, electricity) to compute
- * Quantum computers can compute it faster!
- * 2 ways to go:
 - Use harder problems (post-quantum cryptography)

- * Computational security: message is not hidden, but takes a lot of resources (time, electricity) to compute
- * Quantum computers can compute it faster!
- * 2 ways to go:
 - Use harder problems (post-quantum cryptography)
 - Use one-time pad, but use quantum computers to distribute the keys (QKD)

Alice

* correct: $\rho \approx \rho'$ ($\|\rho - \rho'\|_1 < \varepsilon$)

- * correct: $\rho \approx \rho'$ ($\|\rho \rho'\|_1 < \varepsilon$)
- efficient: Enc and Dec are quantum polynomial-time **

- * correct: $\rho \approx \rho'$ ($\|\rho \rho'\|_1 < \varepsilon$)
- efficient: Enc and Dec are quantum polynomial-time
- * private: σ hides all the information about ρ

Quantum encryption: privacy
* First attempt:

$$\sum_{k \in \{0,1\}^{\ell}} \frac{1}{2^{\ell}} \operatorname{Enc}(\rho, k) \approx \frac{\mathbb{I}}{2^d}$$

* First attempt:

$$\sum_{k \in \{0,1\}^{\ell}} \frac{1}{2^{\ell}} \operatorname{Enc}(\rho, k) \approx \frac{\mathbb{I}}{2^d}$$

* Accounting for side information:

$$\sum_{k \in \{0,1\}^{\ell}} \frac{1}{2^{\ell}} (\operatorname{Enc} \otimes \mathbb{I})(\rho_{ME}, k) \approx \frac{\mathbb{I}}{2^{d}} \otimes \rho_{E}$$

* Accounting for side information:

$$\sum_{k \in \{0,1\}^{\ell}} \frac{1}{2^{\ell}} (\operatorname{Enc} \otimes \mathbb{I})(\rho_{ME}, k) \approx \frac{\mathbb{I}}{2^{d}} \otimes \rho_{E}$$

* Accounting for side information:

$$\sum_{k \in \{0,1\}^{\ell}} \frac{1}{2^{\ell}} (\operatorname{Enc} \otimes \mathbb{I})(\rho_{ME}, k) \approx \frac{\mathbb{I}}{2^{d}} \otimes \rho_{E}$$

Semantic definition:

* Accounting for side information:

$$\sum_{k \in \{0,1\}^{\ell}} \frac{1}{2^{\ell}} (\operatorname{Enc} \otimes \mathbb{I})(\rho_{ME}, k) \approx \frac{\mathbb{I}}{2^{d}} \otimes \rho_{E}$$

Semantic definition:

* Accounting for side information:

$$\sum_{k \in \{0,1\}^{\ell}} \frac{1}{2^{\ell}} (\operatorname{Enc} \otimes \mathbb{I})(\rho_{ME}, k) \approx \frac{\mathbb{I}}{2^{d}} \otimes \rho_{E}$$

Semantic definition:

* First idea: bit flip (X^{k_i} for every qubit *i*)

* First idea: bit flip (X^{k_i} for every qubit *i*) but: $X^0 |+\rangle = X^1 |+\rangle = |+\rangle$ not encrypted!

- * First idea: bit flip (X^{k_i} for every qubit *i*) but: $X^0 |+\rangle = X^1 |+\rangle = |+\rangle$ not encrypted!
- * Bit flips + phase flips:

- * First idea: bit flip (X^{k_i} for every qubit *i*) but: $X^0 |+\rangle = X^1 |+\rangle = |+\rangle$ not encrypted!
- * Bit flips + phase flips:

$$\operatorname{Enc}(\rho, k) = X^{k_1} Z^{k_2} \rho Z^{k_2} X^{k_1} \qquad k \in \{0, 1\}^2$$

- * First idea: bit flip (X^{k_i} for every qubit *i*) but: $X^0 |+\rangle = X^1 |+\rangle = |+\rangle$ not encrypted!
- * Bit flips + phase flips:

 $\operatorname{Enc}(\rho, k) = X^{k_1} Z^{k_2} \rho Z^{k_2} X^{k_1} \qquad k \in \{0, 1\}^2$ $\operatorname{Dec}(\rho, k) = X^{k_1} Z^{k_2} \rho Z^{k_2} X^{k_1}$

- * First idea: bit flip (X^{k_i} for every qubit *i*) but: $X^0 |+\rangle = X^1 |+\rangle = |+\rangle$ not encrypted!
- * Bit flips + phase flips:

 $\operatorname{Enc}(\rho, k) = X^{k_1} Z^{k_2} \rho Z^{k_2} X^{k_1} \qquad k \in \{0, 1\}^2$ $\operatorname{Dec}(\rho, k) = X^{k_1} Z^{k_2} \rho Z^{k_2} X^{k_1}$

* 2*n* bits of key for *n* qubits

$$\sum_{k \in \{0,1\}^2} \frac{1}{4} \operatorname{Enc}(\rho, k)$$

$$\sum_{k \in \{0,1\}^2} \frac{1}{4} \operatorname{Enc}(\rho, k) = \sum_{P \in \{I, X, Z, XZ\}} \frac{1}{4} P \rho P^{\dagger}$$

$$\sum_{k \in \{0,1\}^2} \frac{1}{4} \operatorname{Enc}(\rho, k) = \sum_{P \in \{I, X, Z, XZ\}} \frac{1}{4} P \rho P^{\dagger}$$

$$\sum_{k \in \{0,1\}^2} \frac{1}{4} \operatorname{Enc}(\rho, k) = \sum_{P \in \{I, X, Z, XZ\}} \frac{1}{4} P \rho P^{\dagger}$$
$$= \sum_{P} \frac{1}{8} P (\mathbb{I} + \alpha_1 X + \alpha_2 Y + \alpha_3 Z) P^{\dagger}$$

$$\sum_{k \in \{0,1\}^2} \frac{1}{4} \operatorname{Enc}(\rho, k) = \sum_{P \in \{I, X, Z, XZ\}} \frac{1}{4} P \rho P^{\dagger}$$
$$= \sum_{P} \frac{1}{8} P (\mathbb{I} + \alpha_1 X + \alpha_2 Y + \alpha_3 Z) P^{\dagger}$$

$$\sum_{k \in \{0,1\}^2} \frac{1}{4} \operatorname{Enc}(\rho, k) = \sum_{P \in \{I, X, Z, XZ\}} \frac{1}{4} P \rho P^{\dagger}$$
$$= \sum_{P} \frac{1}{8} P (\mathbb{I} + \alpha_1 X + \alpha_2 Y + \alpha_3 Z) P^{\dagger}$$

$$\sum_{P} \frac{1}{8} P \mathbb{I} P^{\dagger} = \frac{1}{2} \mathbb{I}$$

$$\sum_{k \in \{0,1\}^2} \frac{1}{4} \operatorname{Enc}(\rho, k) = \sum_{P \in \{I, X, Z, XZ\}} \frac{1}{4} P \rho P^{\dagger}$$
$$= \sum_{P} \frac{1}{8} P (\mathbb{I} + \alpha_1 X + \alpha_2 Y + \alpha_3 Z) P^{\dagger}$$
$$= \frac{1}{2} \mathbb{I} +$$
$$\sum_{P} \frac{1}{8} P \mathbb{I} P^{\dagger} = \frac{1}{2} \mathbb{I}$$

$$\sum_{k \in \{0,1\}^2} \frac{1}{4} \operatorname{Enc}(\rho, k) = \sum_{P \in \{I, X, Z, XZ\}} \frac{1}{4} P \rho P^{\dagger}$$
$$= \sum_{P} \frac{1}{8} P (\mathbb{I} + \alpha_1 X + \alpha_2 Y + \alpha_3 Z) P^{\dagger}$$
$$= \frac{1}{2} \mathbb{I} +$$
$$\sum_{P} \frac{1}{8} P \mathbb{I} P^{\dagger} = \frac{1}{2} \mathbb{I}$$

$$\begin{split} \sum_{k \in \{0,1\}^2} \frac{1}{4} \operatorname{Enc}(\rho, k) &= \sum_{P \in \{I, X, Z, XZ\}} \frac{1}{4} P \rho P^{\dagger} \\ &= \sum_{P} \frac{1}{8} P (\mathbb{I} + \alpha_1 X + \alpha_2 Y + \alpha_3 Z) P^{\dagger} \\ &= \frac{1}{2} \mathbb{I} + \\ \sum_{P} \frac{1}{8} P \mathbb{I} P^{\dagger} &= \frac{1}{2} \mathbb{I} \\ \sum_{P} \frac{\alpha_1}{8} P X P^{\dagger} &= \frac{1}{8} (X + XXX + ZXZ + XZXZX) = 0 \end{split}$$

$$\begin{split} \sum_{k \in \{0,1\}^2} \frac{1}{4} \operatorname{Enc}(\rho, k) &= \sum_{P \in \{I, X, Z, XZ\}} \frac{1}{4} P \rho P^{\dagger} \\ &= \sum_{P} \frac{1}{8} P (\mathbb{I} + \alpha_1 X + \alpha_2 Y + \alpha_3 Z) P^{\dagger} \\ &= \frac{1}{2} \mathbb{I} + 0 + \\ \sum_{P} \frac{1}{8} P \mathbb{I} P^{\dagger} &= \frac{1}{2} \mathbb{I} \\ \sum_{P} \frac{\alpha_1}{8} P X P^{\dagger} &= \frac{1}{8} (X + XXX + ZXZ + XZXZX) = 0 \end{split}$$

$$\begin{split} \sum_{k \in \{0,1\}^2} \frac{1}{4} \operatorname{Enc}(\rho, k) &= \sum_{P \in \{I, X, Z, XZ\}} \frac{1}{4} P \rho P^{\dagger} \\ &= \sum_{P} \frac{1}{8} P (\underline{\mathbb{I} + \alpha_1 X + \alpha_2 Y + \alpha_3 Z}) P^{\dagger} \\ &= \frac{1}{2} \underline{\mathbb{I}} + 0 + 0 + \\ \sum_{P} \frac{1}{8} P \underline{\mathbb{I}} P^{\dagger} &= \frac{1}{2} \underline{\mathbb{I}} \\ \sum_{P} \frac{\alpha_1}{8} P X P^{\dagger} &= \frac{1}{8} (X + XXX + ZXZ + XZXZX) = 0 \end{split}$$

$$\sum_{k \in \{0,1\}^2} \frac{1}{4} \operatorname{Enc}(\rho, k) = \sum_{P \in \{I, X, Z, XZ\}} \frac{1}{4} P \rho P^{\dagger}$$
$$= \sum_{P} \frac{1}{8} P (\mathbb{I} + \alpha_1 X + \alpha_2 Y + \alpha_3 Z) P^{\dagger}$$
$$= \frac{1}{2} \mathbb{I} + 0 + 0 + 0 = \frac{1}{2} \mathbb{I}$$
$$\sum_{P} \frac{1}{8} P \mathbb{I} P^{\dagger} = \frac{1}{2} \mathbb{I}$$
$$\sum_{P} \frac{\alpha_1}{8} P X P^{\dagger} = \frac{1}{8} (X + XXX + ZXZ + XZXZX) = 0$$

$$\sum_{k \in \{0,1\}^2} \frac{1}{4} \operatorname{Enc}(\rho, k) = \sum_{P \in \{I, X, Z, XZ\}} \frac{1}{4} P \rho P^{\dagger}$$
$$= \sum_{P} \frac{1}{8} P (\mathbb{I} + \alpha_1 X + \alpha_2 Y + \alpha_3 Z) P^{\dagger}$$
$$= \frac{1}{2} \mathbb{I} + 0 + 0 + 0 = \frac{1}{2} \mathbb{I}$$
$$\sum_{P} \frac{1}{8} P \mathbb{I} P^{\dagger} = \frac{1}{2} \mathbb{I}$$
$$\sum_{P} \frac{\alpha_1}{8} P X P^{\dagger} = \frac{1}{8} (X + XXX + ZXZ + XZXZX) = 0$$

* One-time pad hides all information about the message, but requires a **long key**.

- * One-time pad hides all information about the message, but requires a **long key**.
- Long keys can be distributed using QKD, or we can use (quantum-safe) public-key cryptography

- * One-time pad hides all information about the message, but requires a **long key**.
- Long keys can be distributed using QKD, or we can use (quantum-safe) public-key cryptography
- Quantum one-time pad hides all information about a quantum message using classical (but still long) keys.

- * One-time pad hides all information about the message, but requires a **long key**.
- Long keys can be distributed using QKD, or we can use (quantum-safe) public-key cryptography
- Quantum one-time pad hides all information about a quantum message using classical (but still long) keys.
 - * We used the **uncertainty principle** to make sure we only need finite keys.

I. encryption II. authentication III. secret sharing Application: cloud computing

Primitive II: Authentication

Authentication: definition

Authentication: definition

* $reject : \bot$

* correct: Check(m, Sign(m, k), k) = "accept: m"

- * correct: Check(m, Sign(m, k), k) = "accept: m"
- * efficient: Sign and Check are polynomial-time

- * correct: Check(m, Sign(m, k), k) = "accept: m"
- * efficient: Sign and Check are polynomial-time
- * unforgeability: adversary cannot alter m without being detected

adversary

* Using pseudorandom function family $\{PRF_k\}_k$

* Using pseudorandom function family $\{PRF_k\}_k$

 $\operatorname{Sign}(m,k) := PRF_k(m)$

* Using pseudorandom function family $\{PRF_k\}_k$

Sign $(m, k) := PRF_k(m)$ Check $(m, t, k) := (PRF_k(m) \stackrel{?}{=} t)$

* Using pseudorandom function family $\{PRF_k\}_k$

Sign $(m, k) := PRF_k(m)$ Check $(m, t, k) := (PRF_k(m) \stackrel{?}{=} t)$

 Security relies on the pseudorandomness: can a quantum computer tell the difference from "real" randomness?

* Using pseudorandom function family $\{PRF_k\}_k$

Sign $(m, k) := PRF_k(m)$ Check $(m, t, k) := (PRF_k(m) \stackrel{?}{=} t)$

- Security relies on the pseudorandomness: can a quantum computer tell the difference from "real" randomness?
 - * Quantum-secure PRFs [Zha12]

[Zha12] Mark Zhandry: How to construct quantum random functions

* $reject : \bot$

* $reject : \bot$

Authentication implies encryption:

* Authentication implies encryption:

- outputs one of $* \ accept : \rho$ $* \ reject : \bot$
- * Measure 0/1 basis \rightarrow disturb +/- basis

Alice $\begin{array}{c} Alice \\ \hline \sigma = \operatorname{Sign}(\rho, k) \\ \hline \end{array}$ $\begin{array}{c} \rho \\ (n \text{ qubits}) \\ k \in \{0, 1\}^{\ell} \\ \end{array}$ $\begin{array}{c} Bob \\ \hline \\ k \\ Check(\sigma, k) \\ outputs one of: \end{array}$

* Authentication implies encryption:

- * $accept : \rho$ * $reject : \bot$
- * Measure 0/1 basis \rightarrow disturb +/- basis
 - * Conversely: authenticate +/- basis \rightarrow encrypt 0/1 basis

Example: trap code

Check: undo QOTP, undo permutation, check for errors, and measure all traps (dummy qubits)

[BGS13] Broadbent et al. (2013): Quantum One-Time Programs

 Authentication makes sure a message is not altered after it is signed.

- Authentication makes sure a message is not altered after it is signed.
- Pseudorandom function families can sign classical messages, but they need to be post-quantum secure.

- Authentication makes sure a message is not altered after it is signed.
- Pseudorandom function families can sign classical messages, but they need to be post-quantum secure.
- * Quantum messages can be authenticated by protecting the computational and Hadamard basis separately.

- Authentication makes sure a message is not altered after it is signed.
- Pseudorandom function families can sign classical messages, but they need to be post-quantum secure.
- * Quantum messages can be authenticated by protecting the computational and Hadamard basis separately.
- * Quantum authentication implies quantum encryption.

I. encryption II. authentication III. secret sharing Application: cloud computing

Primitive III: Secret Sharing

* Dealer: knows secret (0010110001), hands out shares

- * Dealer: knows secret (0010110001), hands out shares
- (n,t) secret-sharing: any t out of n players can recover the secret

* Draw *n*-1 random strings $r_1, r_2, ..., r_{n-1}$

- * Draw *n*-1 random strings $r_1, r_2, ..., r_{n-1}$
- * Set $s_i := r_i$ for $i \le n-1$

- * Draw *n*-1 random strings $r_1, r_2, ..., r_{n-1}$
- * Set $s_i := r_i$ for $i \le n-1$
- * Set $s_n := k \oplus s_1 \oplus s_2 \oplus \cdots \oplus s_{n-1}$

- * Draw *n*-1 random strings $r_1, r_2, ..., r_{n-1}$
- * Set $s_i := r_i$ for $i \le n-1$
- * Set $s_n := k \oplus s_1 \oplus s_2 \oplus \cdots \oplus s_{n-1}$

- $s_1 = 1011000001$
 - $s_2 = 1101001110$

- * Draw *n*-1 random strings $r_1, r_2, ..., r_{n-1}$
- * Set $s_i := r_i$ for $i \le n-1$
- * Set $s_n := k \oplus s_1 \oplus s_2 \oplus \cdots \oplus s_{n-1}$

- $s_1 = 1011000001$
 - $s_2 = 1101001110$
 - $s_3 = 0100111110$

- * Draw *n*-1 random strings $r_1, r_2, ..., r_{n-1}$
- * Set $s_i := r_i$ for $i \le n-1$
- * Set $s_n := k \oplus s_1 \oplus s_2 \oplus \cdots \oplus s_{n-1}$

- $s_1 = 1011000001$
- $s_2 = 1101001110$
- $s_3 = 0100111110 \bigoplus (ADDITION MODULO 2)$

- * Draw *n*-1 random strings $r_1, r_2, ..., r_{n-1}$
- * Set $s_i := r_i$ for $i \le n-1$
- * Set $s_n := k \oplus s_1 \oplus s_2 \oplus \cdots \oplus s_{n-1}$

- $s_1 = 1011000001$
- $s_2 = 1101001110$
- $s_3 = 0100111110 \bigoplus (ADDITION MODULO 2)$

0010110001

- * Draw *n*-1 random strings $r_1, r_2, ..., r_{n-1}$
- * Set $s_i := r_i$ for $i \le n-1$
- * Set $s_n := k \oplus s_1 \oplus s_2 \oplus \cdots \oplus s_{n-1}$

For t = n, the randomness protocol is secure (<t players learn *nothing* about the key k)

- For t = n, the randomness protocol is secure (<t players learn *nothing* about the key k)
- For t < n, more complicated protocol is needed. e.g.
 Shamir (polynomials) or Blakley (hyperplanes)

- For t = n, the randomness protocol is secure (<t players learn *nothing* about the key k)
- For t < n, more complicated protocol is needed. e.g.
 Shamir (polynomials) or Blakley (hyperplanes)
- How to distribute the secrets? What about eavesdropping?

* measure in X ($|+\rangle$, $|-\rangle$) or Y basis ($|0\rangle + i|1\rangle$, $|0\rangle - i|1\rangle$)

- * measure in X ($|+\rangle$, $|-\rangle$) or Y basis ($|0\rangle + i|1\rangle$, $|0\rangle i|1\rangle$)
- * publicly share the measurement basis (but not the result)

Suppose everyone measures in X basis (prob 1/8):

Suppose everyone measures in X basis (prob 1/8):

$$|GHZ\rangle = \frac{1}{\sqrt{2}}(|0\rangle^{\otimes 3} + |1\rangle^{\otimes 3})$$

* Suppose everyone measures in X basis (prob 1/8):

$$|GHZ\rangle = \frac{1}{\sqrt{2}}(|0\rangle^{\otimes 3} + |1\rangle^{\otimes 3})$$

$$|0\rangle = (|+\rangle + |-\rangle) / \sqrt{2}$$

$$||\rangle = (|+\rangle - |-\rangle) / \sqrt{2}$$

$$= \frac{1}{4}((|+\rangle + |-\rangle)^{\otimes 3} + (|+\rangle - |-\rangle)^{\otimes 3})$$

Suppose everyone measures in X basis (prob 1/8):

* Suppose everyone measures in X basis (prob 1/8):

$$|GHZ\rangle = \frac{1}{\sqrt{2}}(|0\rangle^{\otimes 3} + |1\rangle^{\otimes 3})$$

$$|GHZ\rangle = \frac{1}{\sqrt{2}}(|0\rangle^{\otimes 3} + |1\rangle^{\otimes 3})$$

$$= \frac{1}{4}((|+\rangle - |-\rangle) \otimes (|0_Y\rangle + |1_Y\rangle)^{\otimes 2}$$

$$+(|+\rangle - |-\rangle) \otimes (-i|0_Y\rangle + i|1_Y\rangle)^{\otimes 2}$$

$$\begin{aligned} |GHZ\rangle &= \frac{1}{\sqrt{2}} (|0\rangle^{\otimes 3} + |1\rangle^{\otimes 3}) \\ &= \frac{1}{4} ((|+\rangle - |-\rangle) \otimes (|0_Y\rangle + |1_Y\rangle)^{\otimes 2} \\ &+ (|+\rangle - |-\rangle) \otimes (-i|0_Y\rangle + i|1_Y\rangle)^{\otimes 2} \\ &= \frac{1}{2} (|+0_Y 1_Y\rangle + |+1_Y 0_Y\rangle + |-0_Y 0_Y\rangle + |-1_Y 1_Y\rangle) \end{aligned}$$

Suppose Alice measures in X basis, Bob and Charlie in Y basis (prob 1/8):

$$|GHZ\rangle = \frac{1}{\sqrt{2}}(|0\rangle^{\otimes 3} + |1\rangle^{\otimes 3})$$

$$= \frac{1}{4}((|+\rangle - |-\rangle) \otimes (|0_Y\rangle + |1_Y\rangle)^{\otimes 2}$$

$$+(|+\rangle - |-\rangle) \otimes (-i|0_Y\rangle + i|1_Y\rangle)^{\otimes 2}$$

$$= \frac{1}{2}(|+0_Y1_Y\rangle + |+1_Y0_Y\rangle + |-0_Y0_Y\rangle + |-1_Y1_Y\rangle)$$

$$||\rangle = |+\rangle - |-\rangle$$

$$||\rangle = |+\rangle - |-\rangle$$

$$||\rangle = |+\rangle - |-\rangle$$

$$||\rangle = |0_Y\rangle + ||_Y\rangle$$

$$||\rangle = -i|0_Y\rangle + ||_Y\rangle$$

$$||\rangle = -i|0_Y\rangle + ||_Y\rangle$$

 $\ket{r_1 \oplus r_2 \oplus 1} \hspace{0.1in} \ket{r_1} \hspace{0.1in} \ket{r_2}$

measurementswith correlation:

with correlation:

XXX XYY YXY YXY YYX

* If the bases don't match: try again (amplification)

- * If the bases don't match: try again (**amplification**)
- * What about eavesdropping?

- * If the bases don't match: try again (**amplification**)
- * What about eavesdropping?

- * If the bases don't match: try again (**amplification**)
- * What about eavesdropping?

- * If the bases don't match: try again (**amplification**)
- * What about eavesdropping?

- * If the bases don't match: try again (**amplification**)
- * What about eavesdropping?

1/2 uncorrelated bases: pass

Test round: same as regular round

correlated bases: share measurement results

1/2

1/2

uncorrelated bases:

pass

Eavesdropper protection: test rounds

Eavesdropper protection: test rounds

Eavesdropper protection: test rounds

If the eavesdropper measures in a different basis than C, he is detected with probability 1/4. **Repeat** to **amplify**!

 Sharing classical secrets: only if t out of n parties come together, they can recover the secret

- Sharing classical secrets: only if t out of n parties come together, they can recover the secret
- * Distributing shares can be done using the GHZ state.

- Sharing classical secrets: only if t out of n parties come together, they can recover the secret
- * Distributing shares can be done using the GHZ state.
 - We used entanglement to ensure correlation between the shares.

- Sharing classical secrets: only if t out of n parties come together, they can recover the secret
- * Distributing shares can be done using the GHZ state.
 - We used entanglement to ensure correlation between the shares.
 - We used the fact that measurements disturb quantum states to protect against eavesdropping.

- Sharing classical secrets: only if t out of n parties come together, they can recover the secret
- * Distributing shares can be done using the GHZ state.
 - We used entanglement to ensure correlation between the shares.
 - We used the fact that measurements disturb quantum states to protect against eavesdropping.
- * Side note: it is also possible to share **quantum secrets**.

I. encryption II. authentication III. secret sharing Application: cloud computing

Application: Cloud Computing

input ρ quantum circuit C

* Can Alice let the cloud perform *C* on ρ , without giving away any information about ρ (privacy)?

- * Can Alice let the cloud perform *C* on ρ , without giving away any information about ρ (privacy)?
- * Can she do so efficiently?

No communication during the computation:
 (quantum) <u>homomorphic encryption</u> [DSS16]

[DSS16] Dulek et al.: Quantum Homomorphic Encryption for Polynomial-Size Circuits

- No communication during the computation:
 (quantum) <u>homomorphic encryption</u> [DSS16]
- * Completely classical client [CGJV17]

[DSS16] Dulek et al.: Quantum Homomorphic Encryption for Polynomial-Size Circuits [CGJV17] Coladangelo et al.: Verifier-on-a-Leash: new schemes for verifiable delegated quantum computation, with quasilinear resources

- No communication during the computation:
 (quantum) <u>homomorphic encryption</u> [DSS16]
- * Completely classical client [CGJV17]
- The cloud server cannot learn the circuit/program:
 <u>blind</u> (quantum) computing [AS06]

[DSS16] Dulek et al.: Quantum Homomorphic Encryption for Polynomial-Size Circuits [CGJV17] Coladangelo et al.: Verifier-on-a-Leash: new schemes for verifiable delegated quantum computation, with quasilinear resources [AS06] Arrighi, Salvail: Blind Quantum Computation

- No communication during the computation:
 (quantum) <u>homomorphic encryption</u> [DSS16]
- * Completely classical client [CGJV17]
- The cloud server cannot learn the circuit/program:
 <u>blind</u> (quantum) computing [AS06]
- Verification of the result:
 Quantum computing on <u>authenticated</u> data [Bro15]

[DSS16] Dulek et al.: Quantum Homomorphic Encryption for Polynomial-Size Circuits [CGJV17] Coladangelo et al.: Verifier-on-a-Leash: new schemes for verifiable delegated quantum computation, with quasilinear resources [AS06] Arrighi, Salvail: Blind Quantum Computation [Bro15] Broadbent: How to verify a quantum computation

* Recall the Pauli group: $\mathcal{P}_1 := \{\pm(i)I, \pm(i)X, \pm(i)Y, \pm(i)Z\}$

- * Recall the Pauli group: $\mathcal{P}_1 := \{\pm(i)I, \pm(i)X, \pm(i)Y, \pm(i)Z\}$
- * Clifford group: gates that commute with Pauli group:

 $\mathcal{C}_n := \{ U \in U(2^n) \mid \forall P \in \mathcal{P}_n : UPU^{\dagger} \in \mathcal{P}_n \}$

- * Recall the Pauli group: $\mathcal{P}_1 := \{\pm(i)I, \pm(i)X, \pm(i)Y, \pm(i)Z\}$
- Clifford group: gates that commute with Pauli group:
 C_n := {U ∈ U(2ⁿ) | ∀P ∈ P_n : UPU[†] ∈ P_n}
 e.g. HIH[†] = I

e.g.
$$HIH' = I$$

 $HXH^{\dagger} = Z$
 $HZH^{\dagger} = X$
 $HYH^{\dagger} = -Y$

- * Recall the Pauli group: $\mathcal{P}_1 := \{\pm(i)I, \pm(i)X, \pm(i)Y, \pm(i)Z\}$
- * Clifford group: gates that commute with Pauli group: $\mathcal{C}_n := \{ U \in U(2^n) \mid \forall P \in \mathcal{P}_n : UPU^{\dagger} \in \mathcal{P}_n \}$ e.g. $HIH^{\dagger} = I$ $HXH^{\dagger} = Z$ $HZH^{\dagger} = X$ $H \in \mathcal{C}_{1}$
 - $HYH^{\dagger} = -Y$

- * Recall the Pauli group: $\mathcal{P}_1 := \{\pm(i)I, \pm(i)X, \pm(i)Y, \pm(i)Z\}$
- * Clifford group: gates that commute with Pauli group: $\mathcal{C}_{n} := \{U \in U(2^{n}) \mid \forall P \in \mathcal{P}_{n} : UPU^{\dagger} \in \mathcal{P}_{n}\}$ HI = IH $HXH^{\dagger} = I$ $HXH^{\dagger} = Z$ $HZH^{\dagger} = X$ $HYH^{\dagger} = -Y$ HZ = XH HY = YH

- * Recall the Pauli group: $\mathcal{P}_1 := \{\pm(i)I, \pm(i)X, \pm(i)Y, \pm(i)Z\}$
- * Clifford group: gates that commute with Pauli group: $\mathcal{C}_n := \{ U \in U(2^n) \mid \forall P \in \mathcal{P}_n : UPU^{\dagger} \in \mathcal{P}_n \}$ e.g. $HIH^{\dagger} = I$ $HXH^{\dagger} = Z$ $HZH^{\dagger} = X$ $H \in \mathcal{C}_{1}$
 - $HYH^{\dagger} = -Y$

- * Recall the Pauli group: $\mathcal{P}_1 := \{\pm(i)I, \pm(i)X, \pm(i)Y, \pm(i)Z\}$
- * Clifford group: gates that commute with Pauli group: $\mathcal{C}_{n} := \{ U \in U(2^{n}) \mid \forall P \in \mathcal{P}_{n} : UPU^{\dagger} \in \mathcal{P}_{n} \}$ e.g. $HIH^{\dagger} = I$ $HXH^{\dagger} = Z$ $HZH^{\dagger} = V$ $H \in \mathcal{C}_{1}$

$$HZH' = X$$
$$HYH^{\dagger} = -Y$$
$$\mathcal{C}_n \text{ is generated by } H, \ CNOT, \ P = \begin{bmatrix} 1 & 0\\ 0 & i \end{bmatrix}$$

- * Recall the Pauli group: $\mathcal{P}_1 := \{\pm(i)I, \pm(i)X, \pm(i)Y, \pm(i)Z\}$
- Clifford group: gates that commute with Pauli group: $\mathcal{C}_n := \{ U \in U(2^n) \mid \forall P \in \mathcal{P}_n : UPU^{\dagger} \in \mathcal{P}_n \}$
- e.g. $HIH^{\dagger} = I$ $HXH^{\dagger} = Z$ $HZH^{\dagger} = X$ \downarrow V $H \in C_1$ $HYH^{\dagger} = -Y$ $* C_n \text{ is generated by } H, CNOT, P = \begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix}$ $* \text{ For universal quantum computation, add } T = \begin{bmatrix} 1 & 0 \\ 0 & e^{\pi i/4} \end{bmatrix}$

input $|\psi\rangle$ (1 qubit) quantum circuit C

1. Alice encrypts $|\psi\rangle$ with one-time pad: $X^a Z^b |\psi\rangle$ (key: (a, b))

- 1. Alice encrypts $|\psi\rangle$ with one-time pad: $X^a Z^b |\psi\rangle$ (key: (a, b))
- 2. For every gate G in circuit C:

- 1. Alice encrypts $|\psi\rangle$ with one-time pad: $X^a Z^b |\psi\rangle$ (key: (a, b))
- 2. For every gate G in circuit C:
 - 1. Server applies G to the ciphertext: $GX^aZ^b|\psi\rangle$

- 1. Alice encrypts $|\psi\rangle$ with one-time pad: $X^a Z^b |\psi\rangle$ (key: (a, b))
- 2. For every gate G in circuit C:
 - 1. Server applies G to the ciphertext: $GX^aZ^b|\psi\rangle$
 - 2. Alice updates her key $GX^aZ^b|\psi\rangle = X^{a'}Z^{b'}G|\psi\rangle$
input $|\psi\rangle$ (1 qubit) quantum circuit C

- 1. Alice encrypts $|\psi\rangle$ with one-time pad: $X^a Z^b |\psi\rangle$ (key: (a, b))
- 2. For every gate G in circuit C:
 - 1. Server applies G to the ciphertext: $GX^aZ^b|\psi\rangle$
 - 2. Alice updates her key $GX^{a}Z^{b}|\psi\rangle = X^{a'}Z^{b'}G|\psi\rangle$
- 3. Alice decrypts one-time pad with updated key

* Clifford gates were "easy" because they commute with the quantum one-time pad

- Clifford gates were "easy" because they commute with the quantum one-time pad
- * T-gate: $TX^aZ^b|\psi\rangle = P^aX^aZ^bT|\psi\rangle$

- Clifford gates were "easy" because they commute with the quantum one-time pad
- * T-gate: $TX^aZ^b|\psi\rangle = P^aX^aZ^bT|\psi\rangle$ ENCRYPTED OUTPUT

- Clifford gates were "easy" because they commute with the quantum one-time pad
- * T-gate: $TX^aZ^b|\psi\rangle = P^aX^aZ^bT|\psi\rangle$ ERROR ENCRYPTED OUTPUT

- Clifford gates were "easy" because they commute with the quantum one-time pad
- * T-gate: $TX^{a}Z^{b}|\psi\rangle = P^{a}X^{a}Z^{b}T|\psi\rangle$ ERROR ENCRYPTED OUTPUT
- * Server does not (and should not) know *a*

 Clifford gates were "easy" because they commute with the quantum one-time pad

* T-gate:
$$TX^aZ^b|\psi\rangle = P^a X^aZ^bT|\psi\rangle$$

ERROR ENCRYPTED OUTPUT

- * Server does not (and should not) know *a*
- * Childs 2005: server sends qubit to Alice, who swaps it out whenever a = 0. Server always applies P-correction.

- Clifford gates were "easy" because they commute with the quantum one-time pad
- * T-gate: $TX^aZ^b|\psi\rangle = P^aX^aZ^bT|\psi\rangle$ ERROR ENCRYPTED OUTPUT
- * Server does not (and should not) know *a*
- * Childs 2005: server sends qubit to Alice, who swaps it out whenever a = 0. Server always applies P-correction.
- * Alternative: magic-state computation

* T-gate: $TX^aZ^b|\psi\rangle = P^aX^aZ^bT|\psi\rangle$ **ERROR ENCRYPTED OUTPUT** * Server does not (and should not) know *a*

- * T-gate: $TX^a Z^b |\psi\rangle = P^a X^a Z^b T |\psi\rangle$ **ERROR ENCRYPTED OUTPUT** * Server does not (and should not) know *a*
- * Alice sends (encrypted version of) $P^a |+\rangle$

- * T-gate: $TX^aZ^b|\psi\rangle = P^aX^aZ^bT|\psi\rangle$ **ERROR ENCRYPTED OUTPUT** * Server does not (and should not) know *a*
- * Alice sends (encrypted version of) $P^a |+\rangle$
- * Server performs CNOT and measurement, and sends the result ($c \in \{0, 1\}$) to Alice

- * T-gate: $TX^a Z^b |\psi\rangle = P^a X^a Z^b T |\psi\rangle$ **ERROR ENCRYPTED OUTPUT** * Server does not (and should not) know *a*
- * Alice sends (encrypted version of) $P^a |+\rangle$
- * Server performs CNOT and measurement, and sends the result ($c \in \{0, 1\}$) to Alice
- * Alice updates keys for CNOT and measurement outcome

- No communication during the computation:
 (quantum) <u>homomorphic encryption</u> [DSS16]
- * Completely classical client [CGJV17]
- The cloud server cannot learn the circuit/program:
 <u>blind</u> (quantum) computing [AS06]
- Verification of the result:
 Quantum computing on <u>authenticated</u> data [Bro15]

- No communication during the computation:
 (quantum) <u>homomorphic encryption</u> [DSS16]
- Completely classical client [CGJV17]
- The cloud server cannot learn the circuit/program:
 <u>blind</u> (quantum) computing [AS06]
- Verification of the result:
 Quantum computing on <u>authenticated</u> data [Bro15]

- No communication during the computation:
 (quantum) <u>homomorphic encryption</u> [DSS16]
- • • Prepare magic states in advance for a = 0 and a = 1
- The cloud server cannot learn the circuit / program:
 <u>blind</u> (quantum) computing [AS06]
- Verification of the result:
 Quantum computing on <u>authenticated</u> data [Bro15]

- No communication during the computation:
 (quantum) <u>homomorphic encryption</u> [DSS16]
- • • Prepare magic states in advance for a = 0 and a = 1
- The Entangle them in a clever way such that the server, using Enc(a) only, can select the correct one
- Verification of the result:
 Quantum computing on <u>authenticated</u> data [Bro15]

- No communication during the computation:
 (quantum) <u>homomorphic encryption</u> [DSS16]
- * Completely classical client [CGJV17]
- The cloud server cannot learn the circuit/program:
 <u>blind</u> (quantum) computing [AS06]
- Verification of the result:
 Quantum computing on <u>authenticated</u> data [Bro15]

- No communication during the computation: (quantum) <u>homomorphic encryption</u> [DSS16]
- * Completely classical client [CGJV17]
- The cloud server cannot learn the circuit / program:
 <u>blind</u> (quantum) computing [AS06]
- Verification of the result:
 Quantum computing on <u>authenticated</u> data [Bro15]

- No communication during the computation: (quantum) <u>homomorphic encryption</u> [DSS16]
- * Completely classical client [CGJV17]
- Th* Talk to two (noncommunicating) cloud servers blind (quantum) computing [AS06]
- Verification of the result:
 Quantum computing on <u>authenticated</u> data [Bro15]

- No communication during the computation: (quantum) <u>homomorphic encryption</u> [DSS16]
- * Completely classical client [CGJV17]
- * Talk to two (noncommunicating) cloud servers
 * Use the second server to prepare the correct magic states

- No communication during the computation:
 (quantum) <u>homomorphic encryption</u> [DSS16]
- * Completely classical client [CGJV17]
- The cloud server cannot learn the circuit/program:
 <u>blind</u> (quantum) computing [AS06]
- Verification of the result:
 Quantum computing on <u>authenticated</u> data [Bro15]

- No communication during the computation: (quantum) <u>homomorphic encryption</u> [DSS16]
- Completely classical client [CGJV17]
- The cloud server cannot learn the circuit/program: blind (quantum) computing [AS06]
- Verification of the result:
 Quantum computing on <u>authenticated</u> data [Bro15]

Computing on authenticated data

Computing on authenticated data

* Verify that C was applied (and not some other circuit)

Computing on authenticated data

- * Verify that C was applied (and not some other circuit)
- * Replace primitive: authentication instead of encryption
Computing on authenticated data

- * Verify that C was applied (and not some other circuit)
- * Replace primitive: authentication instead of encryption
- * Update authentication key during computation [Bro15]

Computing on authenticated data

- * Verify that C was applied (and not some other circuit)
- * Replace primitive: authentication instead of encryption
- * Update authentication key during computation [Bro15]
- Can even be combined with homomorphic encryption!
 [ADSS17]

[Bro15] Broadbent: How to verify a quantum computation [ADSS17] Alagic et al.: Quantum Fully Homomorphic Encryption with Verification

 Alice can outsource her quantum computation to an (untrusted) cloud service without giving up privacy.

- Alice can outsource her quantum computation to an (untrusted) cloud service without giving up privacy.
- We used magic-state computation (which relies on entanglement) to correct for errors during computation.

- Alice can outsource her quantum computation to an (untrusted) cloud service without giving up privacy.
- We used magic-state computation (which relies on entanglement) to correct for errors during computation.
- * We can use **more complicated entanglement** to eliminate communication entirely (homomorphic encryption)

- Alice can outsource her quantum computation to an (untrusted) cloud service without giving up privacy.
- We used magic-state computation (which relies on entanglement) to correct for errors during computation.
- * We can use **more complicated entanglement** to eliminate communication entirely (homomorphic encryption)
- We can replace the encryption primitive with the authentication primitive in order to gain verification.

* Can quantum computing **break** cryptographic primitives?

- * Can quantum computing **break** cryptographic primitives?
 - * Yes: pseudorandom functions used in authentication

- * Can quantum computing **break** cryptographic primitives?
 - * Yes: pseudorandom functions used in authentication
 - * Yes: public-key cryptography

- * Can quantum computing **break** cryptographic primitives?
 - * Yes: pseudorandom functions used in authentication
 - * Yes: public-key cryptography
 - * Most symmetric-key cryptography (e.g. one-time pad) remains secure

- * Can quantum computing **break** cryptographic primitives?
 - * Yes: pseudorandom functions used in authentication
 - * Yes: public-key cryptography
 - * Most symmetric-key cryptography (e.g. one-time pad) remains secure
- * Can quantum computing **improve** cryptographic primitives?

- * Can quantum computing **break** cryptographic primitives?
 - * Yes: pseudorandom functions used in authentication
 - * Yes: public-key cryptography
 - * Most symmetric-key cryptography (e.g. one-time pad) remains secure
- * Can quantum computing **improve** cryptographic primitives?
 - * Yes: key distribution, secret sharing (eavesdropper protection)

- * Can quantum computing **break** cryptographic primitives?
 - * Yes: pseudorandom functions used in authentication
 - * Yes: public-key cryptography
 - * Most symmetric-key cryptography (e.g. one-time pad) remains secure
- * Can quantum computing **improve** cryptographic primitives?
 - * Yes: key distribution, secret sharing (eavesdropper protection)
- * What **quantum applications** are desirable?

- * Can quantum computing **break** cryptographic primitives?
 - * Yes: pseudorandom functions used in authentication
 - * Yes: public-key cryptography
 - * Most symmetric-key cryptography (e.g. one-time pad) remains secure
- * Can quantum computing **improve** cryptographic primitives?
 - * Yes: key distribution, secret sharing (eavesdropper protection)
- * What **quantum applications** are desirable?
 - * Cloud computing: use **quantum primitives** such as encryption, authentication

- * Can quantum computing **break** cryptographic primitives?
 - * Yes: pseudorandom functions used in authentication
 - * Yes: public-key cryptography
 - * Most symmetric-key cryptography (e.g. one-time pad) remains secure
- * Can quantum computing **improve** cryptographic primitives?
 - * Yes: key distribution, secret sharing (eavesdropper protection)
- * What **quantum applications** are desirable?
 - * Cloud computing: use **quantum primitives** such as encryption, authentication
 - Use entanglement to correct errors

- * Can quantum computing **break** cryptographic primitives?
 - * Yes: pseudorandom functions used in authentication
 - * Yes: public-key cryptography
 - * Most symmetric-key cryptography (e.g. one-time pad) remains secure
- * Can quantum computing **improve** cryptographic primitives?
 - * Yes: key distribution, secret sharing (eavesdropper protection)
- * What **quantum applications** are desirable?
 - * Cloud computing: use **quantum primitives** such as encryption, authentication
 - Use entanglement to correct errors

Thank you for your attention!