
Quantum Information for Developers, 11-14 September 2018

Quantum 
Cryptography

Yfke Dulek
                www.qusoft.org
                www.cwi.nl

Advanced track







encryption

signatures

randomness generation

hash functions

key distribution

commitment
…



encryption

signatures

randomness generation

hash functions

key distribution

commitment
…

user accounts
communication

voting

cloud computing

…



encryption

signatures

randomness generation

hash functions

key distribution

commitment
…

user accounts
communication

voting

cloud computing

…

❖ Can quantum computing break the primitives?



encryption

signatures

randomness generation

hash functions

key distribution

commitment
…

user accounts
communication

voting

cloud computing

…

❖ Can quantum computing break the primitives?

❖ Can quantum computing improve the primitives?



encryption

signatures

randomness generation

hash functions

key distribution

commitment
…

user accounts
communication

voting

cloud computing

…

❖ Can quantum computing break the primitives?

❖ Can quantum computing improve the primitives?

❖ What quantum applications are desirable?



encryption

signatures

randomness generation

hash functions

key distribution

commitment
…

user accounts
communication

voting

cloud computing

…

quantum money

❖ Can quantum computing break the primitives?

❖ Can quantum computing improve the primitives?

❖ What quantum applications are desirable?



Outline

❖ Primitives:

I. Encryption (privacy)

II. Authentication

III. Secret sharing 

❖ Application:

I.    Cloud computing



Primitive I: encryption

I. encryption        II. authentication        III. secret sharing        Application: cloud computing
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Encryption: definition

❖ correct: 

❖ efficient: Enc and Dec are polynomial-time

❖ private:    hides all the information about

Alice Bob
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m0 = m
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One-time pad: drawbacks
❖ Long keys: how do Alice and Bob share the key? 

(another primitive: key distribution)

❖ Key is usable only once:

�

�

=

=
}�

(m1 � k)� (m2 � k) = m1 �m2

(images from cryptosmith.com , 31/05/2008)

http://cryptosmith.com
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Alternative: public-key encryption

❖ Computational security: message is not hidden, but 
takes a lot of resources (time, electricity) to compute

❖ Quantum computers can compute it faster!

❖ 2 ways to go:

❖ Use harder problems (post-quantum cryptography)

❖ Use one-time pad, but use quantum computers to 
distribute the keys (QKD)
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❖ First idea: bit flip (        for every qubit i)

but:                                                 not encrypted!
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Summary (Primitive I)
❖ One-time pad hides all information about the message, 

but requires a long key.

❖ Long keys can be distributed using QKD, or we can use 
(quantum-safe) public-key cryptography

❖ Quantum one-time pad hides all information about a 
quantum message using classical (but still long) keys.

❖ We used the uncertainty principle to make sure we 
only need finite keys.
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Alice Bob

k
k 2 {0, 1}`
m 2 {0, 1}n

(m, t) where t = Sign(m, k)

❖ correct:                                                   = “accept:     ”

❖ efficient: Sign and Check are polynomial-time

❖ unforgeability: adversary cannot alter      without being detected

Check(m, t, k)

Check(m, Sign(m, k), k)

m

m

outputs one of:
❖  
❖    reject : ?

accept : m
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Check
(m0, t0)

accept/reject

accept : m0
m

m

(m, t)
Sign reject : ?

Replace 
With ?
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Authentication: example
❖ Using pseudorandom function family

❖ Security relies on the pseudorandomness: can a 
quantum computer tell the difference from “real” 
randomness?

❖ Quantum-secure PRFs [Zha12]

{PRFk}k

Sign(m, k) := PRFk(m)
Check(m, t, k) := (PRFk(m)

?
= t)

[Zha12] Mark Zhandry: How to construct quantum random functions
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Authenticating a quantum state

❖ Authentication implies encryption:

❖ Measure 0/1 basis → disturb +/- basis

❖ Conversely: authenticate +/- basis → encrypt 0/1 basis

Alice Bob

k
k 2 {0, 1}`
⇢ (n qubits)

� = Sign(⇢, k)

outputs one of:
❖  
❖    reject : ?

accept : ⇢

Check(�, k)
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error- 
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error- 
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{
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error- 
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data: needs 
Protecting

|0> trap: 
detects 
bit flips
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Example: trap code

error- 
corr. 
code

⇡k

2
S3i

data: needs 
Protecting

|0> trap: 
detects 
bit flips

|+> trap: 
detects 

phase flips

{
{

|02i�1i

|+ii

| i

Q
O
T
P

Sign:

Check: undo QOTP, undo permutation, check for errors, and 
measure all traps (dummy qubits)
[BGS13] Broadbent et al. (2013): Quantum One-Time Programs
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❖ Authentication makes sure a message is not altered after 
it is signed.

❖ Pseudorandom function families can sign classical 
messages, but they need to be post-quantum secure.

❖ Quantum messages can be authenticated by protecting 
the computational and Hadamard basis separately.

❖ Quantum authentication implies quantum encryption.
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❖ Dealer: knows secret (0010110001), hands out shares

❖ (n,t) secret-sharing: any t out of n players can recover 
the secret

Secret sharing: definition

k = 0010110001
s1 s2 s3
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❖ Draw n-1 random strings 

❖ Set                for 

❖ Set 

k = 0010110001

r1, r2, ..., rn�1

si := ri i  n� 1

sn := k � s1 � s2 � · · ·� sn�1

s1 =

s2 =

s3 =
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Secret sharing: considerations

❖ For t = n, the randomness protocol is secure (<t players 
learn nothing about the key k)

❖ For t < n, more complicated protocol is needed. e.g. 
Shamir (polynomials) or Blakley (hyperplanes)

❖ How to distribute the secrets? What about 
eavesdropping?
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r1

r2

r1 � r2

|GHZi = 1p
2
(|0i⌦3 + |1i⌦3)

k 2 {0, 1}

❖ measure in X                  or Y basis

❖ publicly share the measurement basis (but not the result)

(|+i, |�i) (|0i+ i|1i, |0i � i|1i)



Example: X X X measurement



Example: X X X measurement
❖ Suppose everyone measures in X basis (prob 1/8):



Example: X X X measurement
❖ Suppose everyone measures in X basis (prob 1/8):

|GHZi = 1p
2
(|0i⌦3 + |1i⌦3)



Example: X X X measurement
❖ Suppose everyone measures in X basis (prob 1/8):

|GHZi = 1p
2
(|0i⌦3 + |1i⌦3) |0> = (|+> + |->) / √2 

|1> = (|+> - |->) /  √2

=
1

4
((|+i+ |�i)⌦3 + (|+i � |�i)⌦3)



Example: X X X measurement
❖ Suppose everyone measures in X basis (prob 1/8):

|GHZi = 1p
2
(|0i⌦3 + |1i⌦3)

=
1

2
(|+++i+ |+��i+ |�+�i+ |��+i)

|0> = (|+> + |->) / √2 
|1> = (|+> - |->) /  √2

Inter- 
  ference

=
1

4
((|+i+ |�i)⌦3 + (|+i � |�i)⌦3)



Example: X X X measurement
❖ Suppose everyone measures in X basis (prob 1/8):

|GHZi = 1p
2
(|0i⌦3 + |1i⌦3)

=
1

2
(|+++i+ |+��i+ |�+�i+ |��+i)

|0> = (|+> + |->) / √2 
|1> = (|+> - |->) /  √2

Inter- 
  ference

|r1 � r2 r1 r2i

=
1

4
((|+i+ |�i)⌦3 + (|+i � |�i)⌦3)



Example: X Y Y measurement



Example: X Y Y measurement
❖ Suppose Alice measures in X basis, Bob and Charlie in Y 

basis (prob 1/8):



Example: X Y Y measurement
❖ Suppose Alice measures in X basis, Bob and Charlie in Y 

basis (prob 1/8):

|GHZi = 1p
2
(|0i⌦3 + |1i⌦3)



Example: X Y Y measurement
❖ Suppose Alice measures in X basis, Bob and Charlie in Y 

basis (prob 1/8):

|GHZi = 1p
2
(|0i⌦3 + |1i⌦3)

|0> = |+> + |-> 
  |1> = |+> - |-> 
   |0> = |0Y> + |1Y> 
  |1>= -i |0Y> + i |1Y>

=
1

4
((|+i � |�i)⌦ (|0Y i+ |1Y i)⌦2

+(|+i � |�i)⌦ (�i|0Y i+ i|1Y i)⌦2



Example: X Y Y measurement
❖ Suppose Alice measures in X basis, Bob and Charlie in Y 

basis (prob 1/8):

|GHZi = 1p
2
(|0i⌦3 + |1i⌦3)

|0> = |+> + |-> 
  |1> = |+> - |-> 
   |0> = |0Y> + |1Y> 
  |1>= -i |0Y> + i |1Y>

Inter- 
  ference

=
1

4
((|+i � |�i)⌦ (|0Y i+ |1Y i)⌦2

+(|+i � |�i)⌦ (�i|0Y i+ i|1Y i)⌦2

=
1

2
(|+ 0Y 1Y i+ |+ 1Y 0Y i+ |� 0Y 0Y i+ |� 1Y 1Y i)



Example: X Y Y measurement
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|0> = |+> + |-> 
  |1> = |+> - |-> 
   |0> = |0Y> + |1Y> 
  |1>= -i |0Y> + i |1Y>

Inter- 
  ference

|r1 � r2 � 1 r1 r2i

=
1
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❖ If the bases don’t match: try again (amplification)

❖ What about eavesdropping?

X or Y
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Eavesdropper protection: test rounds
Test round: same as regular round

uncorrelated bases:
pass

correlated bases:
share measurement

results

If the eavesdropper measures in a different basis than C, he is 
detected with probability 1/4. Repeat to amplify!

pass
= r1 � r2dealer’s

result
fail
6= r1 � r2dealer’s

result

1/2 1/2

1/2 1/2
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Summary (Primitive III)
❖ Sharing classical secrets: only if t out of n parties come 

together, they can recover the secret

❖ Distributing shares can be done using the GHZ state.

❖ We used entanglement to ensure correlation between 
the shares.

❖ We used the fact that measurements disturb quantum 
states to protect against eavesdropping.

❖ Side note: it is also possible to share quantum secrets.



Application: Cloud Computing

I. encryption        II. authentication        III. secret sharing        Application: cloud computing
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Quantum Cloud Computing [Chi05]

input  
quantum circuit 

⇢

C

❖ Can Alice let the cloud perform      on   , without giving 
away any information about     (privacy)?

❖ Can she do so efficiently?

⇢

⇢

C

[Chi05] Childs: Secure Assisted Quantum Computation
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❖ Completely classical client [CGJV17]

❖ The cloud server cannot learn the circuit/program:  
blind (quantum) computing [AS06]

❖ Verification of the result:  
Quantum computing on authenticated data [Bro15]

[DSS16] Dulek et al.: Quantum Homomorphic Encryption for Polynomial-Size Circuits
[CGJV17] Coladangelo et al.: Verifier-on-a-Leash: new schemes for verifiable delegated quantum computation, 
with quasilinear resources
[AS06] Arrighi, Salvail: Blind Quantum Computation
[Bro15] Broadbent: How to verify a quantum computation
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Cn := {U 2 U(2n) | 8P 2 Pn : UPU † 2 Pn}

HIH† = I
HXH† = Z
HZH† = X
HYH† = �Y

{H 2 C1

H, CNOT, P =


1 0
0 i

�
Cn

e.g.



Preliminary: Clifford group
❖ Recall the Pauli group: 

❖ Clifford group: gates that commute with Pauli group:  
 
 

❖       is generated by 

❖ For universal quantum computation, add

P1 := {±(i)I,±(i)X,±(i)Y,±(i)Z}

Cn := {U 2 U(2n) | 8P 2 Pn : UPU † 2 Pn}

HIH† = I
HXH† = Z
HZH† = X
HYH† = �Y

{H 2 C1

H, CNOT, P =


1 0
0 i

�
Cn

T =


1 0
0 e⇡i/4

�

e.g.
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Cloud computing (for Cliffords)
input        (1 qubit)  
quantum circuit C

| i

1. Alice encrypts       with one-time pad:  
(key: (       ))

2. For every gate G in circuit C:

1. Server applies G to the ciphertext:

2. Alice updates her key

3. Alice decrypts one-time pad with updated key

| i XaZb| i

GXaZb| i

GXaZb| i = Xa0
Zb0G| i

a, b
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Cloud computing (for non-Clifford)
❖ Clifford gates were “easy” because they commute with 

the quantum one-time pad

❖ T-gate:

❖ Server does not (and should not) know

❖ Childs 2005: server sends qubit to Alice, who swaps it 
out whenever           . Server always applies P-correction.

❖ Alternative: magic-state computation

TXaZb| i = P aXaZbT | i
Encrypted output

a

a = 0
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TXaZb| i = P aXaZbT | i
Encrypted output

a

❖ T-gate:

❖ Server does not (and should not) know

❖ Alice sends (encrypted version of) 

❖ Server performs CNOT and measurement, and sends the 
result (                 ) to Alice

❖ Alice updates keys for CNOT and measurement outcome

Cloud computing (for non-Clifford)

P a|+i

c 2 {0, 1}
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Computing on authenticated data

❖ Verify that C was applied (and not some other circuit)

❖ Replace primitive: authentication instead of encryption

❖ Update authentication key during computation [Bro15]

❖ Can even be combined with homomorphic encryption! 
[ADSS17]

[Bro15] Broadbent: How to verify a quantum computation
[ADSS17] Alagic et al.: Quantum Fully Homomorphic Encryption with Verification
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Summary (Application I)
❖ Alice can outsource her quantum computation to an 

(untrusted) cloud service without giving up privacy.

❖ We used magic-state computation (which relies on 
entanglement) to correct for errors during computation.

❖ We can use more complicated entanglement to eliminate 
communication entirely (homomorphic encryption)

❖ We can replace the encryption primitive with the 
authentication primitive in order to gain verification.



Summary (morning session)



Summary (morning session)
❖ Can quantum computing break cryptographic primitives?



Summary (morning session)
❖ Can quantum computing break cryptographic primitives?

❖ Yes: pseudorandom functions used in authentication



Summary (morning session)
❖ Can quantum computing break cryptographic primitives?

❖ Yes: pseudorandom functions used in authentication

❖ Yes: public-key cryptography



Summary (morning session)
❖ Can quantum computing break cryptographic primitives?

❖ Yes: pseudorandom functions used in authentication

❖ Yes: public-key cryptography

❖ Most symmetric-key cryptography (e.g. one-time pad) remains secure



Summary (morning session)
❖ Can quantum computing break cryptographic primitives?

❖ Yes: pseudorandom functions used in authentication

❖ Yes: public-key cryptography

❖ Most symmetric-key cryptography (e.g. one-time pad) remains secure

❖ Can quantum computing improve cryptographic primitives?



Summary (morning session)
❖ Can quantum computing break cryptographic primitives?

❖ Yes: pseudorandom functions used in authentication

❖ Yes: public-key cryptography

❖ Most symmetric-key cryptography (e.g. one-time pad) remains secure

❖ Can quantum computing improve cryptographic primitives?

❖ Yes: key distribution, secret sharing (eavesdropper protection)



Summary (morning session)
❖ Can quantum computing break cryptographic primitives?

❖ Yes: pseudorandom functions used in authentication

❖ Yes: public-key cryptography

❖ Most symmetric-key cryptography (e.g. one-time pad) remains secure

❖ Can quantum computing improve cryptographic primitives?

❖ Yes: key distribution, secret sharing (eavesdropper protection)

❖ What quantum applications are desirable?



Summary (morning session)
❖ Can quantum computing break cryptographic primitives?

❖ Yes: pseudorandom functions used in authentication

❖ Yes: public-key cryptography

❖ Most symmetric-key cryptography (e.g. one-time pad) remains secure

❖ Can quantum computing improve cryptographic primitives?

❖ Yes: key distribution, secret sharing (eavesdropper protection)

❖ What quantum applications are desirable?

❖ Cloud computing: use quantum primitives such as encryption, authentication



Summary (morning session)
❖ Can quantum computing break cryptographic primitives?

❖ Yes: pseudorandom functions used in authentication

❖ Yes: public-key cryptography

❖ Most symmetric-key cryptography (e.g. one-time pad) remains secure

❖ Can quantum computing improve cryptographic primitives?

❖ Yes: key distribution, secret sharing (eavesdropper protection)

❖ What quantum applications are desirable?

❖ Cloud computing: use quantum primitives such as encryption, authentication

❖ Use entanglement to correct errors



Summary (morning session)
❖ Can quantum computing break cryptographic primitives?

❖ Yes: pseudorandom functions used in authentication

❖ Yes: public-key cryptography

❖ Most symmetric-key cryptography (e.g. one-time pad) remains secure

❖ Can quantum computing improve cryptographic primitives?

❖ Yes: key distribution, secret sharing (eavesdropper protection)

❖ What quantum applications are desirable?

❖ Cloud computing: use quantum primitives such as encryption, authentication

❖ Use entanglement to correct errors

Thank you for your attention!


