
Quantum Information for Developers, 11-14 September 2018

Quantum
Cryptography

Yfke Dulek
 www.qusoft.org
 www.cwi.nl

Advanced track

encryption

signatures

randomness generation

hash functions

key distribution

commitment
…

encryption

signatures

randomness generation

hash functions

key distribution

commitment
…

user accounts
communication

voting

cloud computing

…

encryption

signatures

randomness generation

hash functions

key distribution

commitment
…

user accounts
communication

voting

cloud computing

…

❖ Can quantum computing break the primitives?

encryption

signatures

randomness generation

hash functions

key distribution

commitment
…

user accounts
communication

voting

cloud computing

…

❖ Can quantum computing break the primitives?

❖ Can quantum computing improve the primitives?

encryption

signatures

randomness generation

hash functions

key distribution

commitment
…

user accounts
communication

voting

cloud computing

…

❖ Can quantum computing break the primitives?

❖ Can quantum computing improve the primitives?

❖ What quantum applications are desirable?

encryption

signatures

randomness generation

hash functions

key distribution

commitment
…

user accounts
communication

voting

cloud computing

…

quantum money

❖ Can quantum computing break the primitives?

❖ Can quantum computing improve the primitives?

❖ What quantum applications are desirable?

Outline

❖ Primitives:

I. Encryption (privacy)

II. Authentication

III. Secret sharing

❖ Application:

I. Cloud computing

Primitive I: encryption

I. encryption II. authentication III. secret sharing Application: cloud computing

Encryption: definition

Encryption: definition
Alice Bob

Encryption: definition
Alice Bob

m 2 {0, 1}n

Encryption: definition
Alice Bob

k
k 2 {0, 1}`
m 2 {0, 1}n

Encryption: definition
Alice Bob

k
k 2 {0, 1}`
m 2 {0, 1}n

c = Enc(m, k) 2 {0, 1}d

Encryption: definition
Alice Bob

k
k 2 {0, 1}`
m 2 {0, 1}n

c = Enc(m, k) 2 {0, 1}d

m0 = Dec(c, k)

Encryption: definition

❖ correct:

Alice Bob

k
k 2 {0, 1}`
m 2 {0, 1}n

c = Enc(m, k) 2 {0, 1}d

m0 = Dec(c, k)

m0 = m

Encryption: definition

❖ correct:

❖ efficient: Enc and Dec are polynomial-time

Alice Bob

k
k 2 {0, 1}`
m 2 {0, 1}n

c = Enc(m, k) 2 {0, 1}d

m0 = Dec(c, k)

m0 = m

Encryption: definition

❖ correct:

❖ efficient: Enc and Dec are polynomial-time

❖ private: hides all the information about

Alice Bob

k
k 2 {0, 1}`
m 2 {0, 1}n

c = Enc(m, k) 2 {0, 1}d

m0 = Dec(c, k)

m0 = m

mc

Example: one-time pad ()also known
as Vernam

cipher

Example: one-time pad ()
m = 0 1 1 0 1 0 0 0

also known
as Vernam

cipher

Example: one-time pad ()
m = 0 1 1 0 1 0 0 0
k = 0 0 0 1 1 0 1 0

also known
as Vernam

cipher

Example: one-time pad ()

❖ Key is selected uniformly random (independent of)

m = 0 1 1 0 1 0 0 0

k m

k = 0 0 0 1 1 0 1 0

also known
as Vernam

cipher

Example: one-time pad ()

❖ Key is selected uniformly random (independent of)

m = 0 1 1 0 1 0 0 0

k m

k = 0 0 0 1 1 0 1 0 � (addition
modulo 2)

also known
as Vernam

cipher

Example: one-time pad ()

❖ Key is selected uniformly random (independent of)

m = 0 1 1 0 1 0 0 0

k m

k = 0 0 0 1 1 0 1 0 � (addition
modulo 2)

0 1 1 1 0 0 1 0c =

also known
as Vernam

cipher

Example: one-time pad ()

❖ Key is selected uniformly random (independent of)

❖ Dec is the same as Enc

m = 0 1 1 0 1 0 0 0

k m

k = 0 0 0 1 1 0 1 0 � (addition
modulo 2)

0 1 1 1 0 0 1 0c =

also known
as Vernam

cipher

Example: one-time pad ()

❖ Key is selected uniformly random (independent of)

❖ Dec is the same as Enc

m = 0 1 1 0 1 0 0 0

k m

k = 0 0 0 1 1 0 1 0 � (addition
modulo 2)

0 1 1 1 0 0 1 0c =

k = 0 0 0 1 1 0 1 0

also known
as Vernam

cipher

Example: one-time pad ()

❖ Key is selected uniformly random (independent of)

❖ Dec is the same as Enc

m = 0 1 1 0 1 0 0 0

k m

k = 0 0 0 1 1 0 1 0 � (addition
modulo 2)

0 1 1 1 0 0 1 0c =

k = 0 0 0 1 1 0 1 0 �

also known
as Vernam

cipher

Example: one-time pad ()

❖ Key is selected uniformly random (independent of)

❖ Dec is the same as Enc

m = 0 1 1 0 1 0 0 0

k m

k = 0 0 0 1 1 0 1 0 � (addition
modulo 2)

0 1 1 1 0 0 1 0c =

k = 0 0 0 1 1 0 1 0 �
m0 = 0 1 1 0 1 0 0 0

also known
as Vernam

cipher

More formally: ‘privacy’

More formally: ‘privacy’
❖ Probability-theoretic definition of privacy:  
 

8m8c : Pr[M = m | C = c] = Pr[M = m]

More formally: ‘privacy’
❖ Probability-theoretic definition of privacy:  
 

❖ Semantic definition of privacy:  
 
 
 

8m8c : Pr[M = m | C = c] = Pr[M = m]

More formally: ‘privacy’
❖ Probability-theoretic definition of privacy:  
 

❖ Semantic definition of privacy:  
 
 
 

adversary

8m8c : Pr[M = m | C = c] = Pr[M = m]

More formally: ‘privacy’
❖ Probability-theoretic definition of privacy:  
 

❖ Semantic definition of privacy:  
 
 
 

c

adversary

s
‘target’

8m8c : Pr[M = m | C = c] = Pr[M = m]

More formally: ‘privacy’
❖ Probability-theoretic definition of privacy:  
 

❖ Semantic definition of privacy:  
 
 
 

c

adversary

simulator

s
‘target’

8m8c : Pr[M = m | C = c] = Pr[M = m]

More formally: ‘privacy’
❖ Probability-theoretic definition of privacy:  
 

❖ Semantic definition of privacy:  
 
 
 

c

adversary

simulator

s

s

‘target’

8m8c : Pr[M = m | C = c] = Pr[M = m]

One-time pad is private (proof)

❖ Claim:

One-time pad is private (proof)
8m8c : Pr[M = m | C = c] = Pr[M = m]

❖ Claim:
❖ Proof: Fix and . Using Bayes’ theorem:

One-time pad is private (proof)
8m8c : Pr[M = m | C = c] = Pr[M = m]

m c

❖ Claim:
❖ Proof: Fix and . Using Bayes’ theorem:

One-time pad is private (proof)
8m8c : Pr[M = m | C = c] = Pr[M = m]

Pr[M = m | C = c] =
Pr[C = c | M = m] · Pr[M = m]

Pr[C = c]

m c

❖ Claim:
❖ Proof: Fix and . Using Bayes’ theorem:

One-time pad is private (proof)
8m8c : Pr[M = m | C = c] = Pr[M = m]

Pr[M = m | C = c] =
Pr[C = c | M = m] · Pr[M = m]

Pr[C = c]

m c

❖ Claim:
❖ Proof: Fix and . Using Bayes’ theorem:

One-time pad is private (proof)
8m8c : Pr[M = m | C = c] = Pr[M = m]

Pr[M = m | C = c] =
Pr[C = c | M = m] · Pr[M = m]

Pr[C = c]
8kPr[K = k] = 2�`

m c

❖ Claim:
❖ Proof: Fix and . Using Bayes’ theorem:

One-time pad is private (proof)
8m8c : Pr[M = m | C = c] = Pr[M = m]

Pr[M = m | C = c] =
Pr[C = c | M = m] · Pr[M = m]

Pr[C = c]
8kPr[K = k] = 2�`

8kPr[K = k|M = m] = 2�`

m c

❖ Claim:
❖ Proof: Fix and . Using Bayes’ theorem:

One-time pad is private (proof)
8m8c : Pr[M = m | C = c] = Pr[M = m]

Pr[M = m | C = c] =
Pr[C = c | M = m] · Pr[M = m]

Pr[C = c]
8kPr[K = k] = 2�`

8kPr[K = k|M = m] = 2�`

9!k : m� k = c

m c

❖ Claim:
❖ Proof: Fix and . Using Bayes’ theorem:

One-time pad is private (proof)
8m8c : Pr[M = m | C = c] = Pr[M = m]

Pr[M = m | C = c] =
Pr[C = c | M = m] · Pr[M = m]

Pr[C = c]
8kPr[K = k] = 2�`

{8kPr[K = k|M = m] = 2�`

9!k : m� k = c
Pr[C = c|M = m] = 2�`

m c

❖ Claim:
❖ Proof: Fix and . Using Bayes’ theorem:

One-time pad is private (proof)
8m8c : Pr[M = m | C = c] = Pr[M = m]

Pr[M = m | C = c] =
Pr[C = c | M = m] · Pr[M = m]

Pr[C = c]
8kPr[K = k] = 2�`

{8kPr[K = k|M = m] = 2�`

9!k : m� k = c
Pr[C = c|M = m] = 2�`

m c

❖ Claim:
❖ Proof: Fix and . Using Bayes’ theorem:

One-time pad is private (proof)
8m8c : Pr[M = m | C = c] = Pr[M = m]

Pr[M = m | C = c] =
Pr[C = c | M = m] · Pr[M = m]

Pr[C = c]
8kPr[K = k] = 2�`

{8kPr[K = k|M = m] = 2�`

9!k : m� k = c
Pr[C = c|M = m] = 2�`

Pr[C = c] =
X

m0

Pr[M = m0] · Pr[C = c|M = m0] =

m c

❖ Claim:
❖ Proof: Fix and . Using Bayes’ theorem:

One-time pad is private (proof)
8m8c : Pr[M = m | C = c] = Pr[M = m]

Pr[M = m | C = c] =
Pr[C = c | M = m] · Pr[M = m]

Pr[C = c]
8kPr[K = k] = 2�`

{8kPr[K = k|M = m] = 2�`

9!k : m� k = c
Pr[C = c|M = m] = 2�`

Pr[C = c] =
X

m0

Pr[M = m0] · Pr[C = c|M = m0] =

X

m0

Pr[M = m0] · 2�` =

m c

❖ Claim:
❖ Proof: Fix and . Using Bayes’ theorem:

One-time pad is private (proof)
8m8c : Pr[M = m | C = c] = Pr[M = m]

Pr[M = m | C = c] =
Pr[C = c | M = m] · Pr[M = m]

Pr[C = c]
8kPr[K = k] = 2�`

{8kPr[K = k|M = m] = 2�`

9!k : m� k = c
Pr[C = c|M = m] = 2�`

Pr[C = c] =
X

m0

Pr[M = m0] · Pr[C = c|M = m0] =

X

m0

Pr[M = m0] · 2�` = 2�`

m c

One-time pad: drawbacks

One-time pad: drawbacks
❖ Long keys: how do Alice and Bob share the key?

(another primitive: key distribution)

One-time pad: drawbacks
❖ Long keys: how do Alice and Bob share the key?

(another primitive: key distribution)

❖ Key is usable only once:

One-time pad: drawbacks
❖ Long keys: how do Alice and Bob share the key?

(another primitive: key distribution)

❖ Key is usable only once:

(images from cryptosmith.com , 31/05/2008)

http://cryptosmith.com

One-time pad: drawbacks
❖ Long keys: how do Alice and Bob share the key?

(another primitive: key distribution)

❖ Key is usable only once:

� =

(images from cryptosmith.com , 31/05/2008)

http://cryptosmith.com

One-time pad: drawbacks
❖ Long keys: how do Alice and Bob share the key?

(another primitive: key distribution)

❖ Key is usable only once:

�

�

=

=

(images from cryptosmith.com , 31/05/2008)

http://cryptosmith.com

One-time pad: drawbacks
❖ Long keys: how do Alice and Bob share the key?

(another primitive: key distribution)

❖ Key is usable only once:

�

�

=

=
}�

(images from cryptosmith.com , 31/05/2008)

http://cryptosmith.com

One-time pad: drawbacks
❖ Long keys: how do Alice and Bob share the key?

(another primitive: key distribution)

❖ Key is usable only once:

�

�

=

=
}�

(m1 � k)� (m2 � k) = m1 �m2

(images from cryptosmith.com , 31/05/2008)

http://cryptosmith.com

Alternative: public-key encryption

Alternative: public-key encryption

❖ Computational security: message is not hidden, but
takes a lot of resources (time, electricity) to compute

Alternative: public-key encryption

❖ Computational security: message is not hidden, but
takes a lot of resources (time, electricity) to compute

❖ Quantum computers can compute it faster!

Alternative: public-key encryption

❖ Computational security: message is not hidden, but
takes a lot of resources (time, electricity) to compute

❖ Quantum computers can compute it faster!

❖ 2 ways to go:

Alternative: public-key encryption

❖ Computational security: message is not hidden, but
takes a lot of resources (time, electricity) to compute

❖ Quantum computers can compute it faster!

❖ 2 ways to go:

❖ Use harder problems (post-quantum cryptography)

Alternative: public-key encryption

❖ Computational security: message is not hidden, but
takes a lot of resources (time, electricity) to compute

❖ Quantum computers can compute it faster!

❖ 2 ways to go:

❖ Use harder problems (post-quantum cryptography)

❖ Use one-time pad, but use quantum computers to
distribute the keys (QKD)

Quantum encryption: definition
Alice Bob

k
k 2 {0, 1}`
m 2 {0, 1}n

c = Enc(m, k) 2 {0, 1}d

m0 = Dec(c, k)

Quantum encryption: definition
Alice Bob

k
k 2 {0, 1}`

c = Enc(m, k) 2 {0, 1}d

m0 = Dec(c, k)
⇢ (n qubits)

Quantum encryption: definition
Alice Bob

k
k 2 {0, 1}` m0 = Dec(c, k)
⇢ (n qubits)

� = Enc(⇢, k) (d qubits)

Quantum encryption: definition
Alice Bob

k
k 2 {0, 1}`
⇢ (n qubits)

� = Enc(⇢, k) (d qubits)

⇢0 = Dec(�, k)

Quantum encryption: definition

❖ correct:

Alice Bob

k
k 2 {0, 1}`

()k⇢� ⇢0k1 < "

⇢ (n qubits)

� = Enc(⇢, k) (d qubits)

⇢0 = Dec(�, k)

⇢ ⇡ ⇢0

Quantum encryption: definition

❖ correct:

❖ efficient: Enc and Dec are quantum polynomial-time

Alice Bob

k
k 2 {0, 1}`

()k⇢� ⇢0k1 < "

⇢ (n qubits)

� = Enc(⇢, k) (d qubits)

⇢0 = Dec(�, k)

⇢ ⇡ ⇢0

Quantum encryption: definition

❖ correct:

❖ efficient: Enc and Dec are quantum polynomial-time

❖ private: hides all the information about

Alice Bob

k
k 2 {0, 1}`

()k⇢� ⇢0k1 < "

⇢ (n qubits)

� = Enc(⇢, k) (d qubits)

⇢0 = Dec(�, k)

⇢�

⇢ ⇡ ⇢0

Quantum encryption: privacy

Quantum encryption: privacy

❖ First attempt: X

k2{0,1}`

1

2`
Enc(⇢, k) ⇡ I

2d

❖ Accounting for side information:

Quantum encryption: privacy

❖ First attempt:

X

k2{0,1}`

1

2`
(Enc⌦ I)(⇢ME , k) ⇡

I
2d

⌦ ⇢E

X

k2{0,1}`

1

2`
Enc(⇢, k) ⇡ I

2d

❖ Accounting for side information:

Quantum encryption: privacy

X

k2{0,1}`

1

2`
(Enc⌦ I)(⇢ME , k) ⇡

I
2d

⌦ ⇢E

❖ Semantic definition:

❖ Accounting for side information:

Quantum encryption: privacy

X

k2{0,1}`

1

2`
(Enc⌦ I)(⇢ME , k) ⇡

I
2d

⌦ ⇢E

❖ Semantic definition:

❖ Accounting for side information:

Quantum encryption: privacy

adversary

X

k2{0,1}`

1

2`
(Enc⌦ I)(⇢ME , k) ⇡

I
2d

⌦ ⇢E

Enc
⇢

M

E
⇢0

❖ Semantic definition:

❖ Accounting for side information:

Quantum encryption: privacy

adversary

simulator

X

k2{0,1}`

1

2`
(Enc⌦ I)(⇢ME , k) ⇡

I
2d

⌦ ⇢E

Enc
⇢

M

E

⇢
M

E

⇢0

⇡ ⇢0

Quantum one-time pad (QOTP)

Quantum one-time pad (QOTP)

❖ First idea: bit flip (for every qubit i)Xki

Quantum one-time pad (QOTP)

❖ First idea: bit flip (for every qubit i)

but: not encrypted!

Xki

X0|+i = X1|+i = |+i

Quantum one-time pad (QOTP)

❖ First idea: bit flip (for every qubit i)

but: not encrypted!

❖ Bit flips + phase flips:  
 
 

Xki

X0|+i = X1|+i = |+i

Quantum one-time pad (QOTP)

❖ First idea: bit flip (for every qubit i)

but: not encrypted!

❖ Bit flips + phase flips:  
 
 

Xki

X0|+i = X1|+i = |+i

Enc(⇢, k) = Xk1Zk2⇢Zk2Xk1 k 2 {0, 1}2

Quantum one-time pad (QOTP)

❖ First idea: bit flip (for every qubit i)

but: not encrypted!

❖ Bit flips + phase flips:  
 
 

Xki

X0|+i = X1|+i = |+i

Dec(⇢, k) = Xk1Zk2⇢Zk2Xk1

Enc(⇢, k) = Xk1Zk2⇢Zk2Xk1 k 2 {0, 1}2

Quantum one-time pad (QOTP)

❖ First idea: bit flip (for every qubit i)

but: not encrypted!

❖ Bit flips + phase flips:  
 
 

❖ 2n bits of key for n qubits

Xki

X0|+i = X1|+i = |+i

Dec(⇢, k) = Xk1Zk2⇢Zk2Xk1

Enc(⇢, k) = Xk1Zk2⇢Zk2Xk1 k 2 {0, 1}2

QOTP is secure (proof idea)

QOTP is secure (proof idea)
Singe-qubit state (no side information)⇢

QOTP is secure (proof idea)

X

k2{0,1}2

1

4
Enc(⇢, k)

Singe-qubit state (no side information)⇢

QOTP is secure (proof idea)

X

k2{0,1}2

1

4
Enc(⇢, k)

X

P2{I,X,Z,XZ}

1

4
P⇢P †=

Singe-qubit state (no side information)⇢

QOTP is secure (proof idea)

X

k2{0,1}2

1

4
Enc(⇢, k)

X

P2{I,X,Z,XZ}

1

4
P⇢P †=

Singe-qubit state (no side information)⇢

QOTP is secure (proof idea)

X

k2{0,1}2

1

4
Enc(⇢, k)

X

P2{I,X,Z,XZ}

1

4
P⇢P †=

X

P

1

8
P (I+ ↵1X + ↵2Y + ↵3Z)P †=

Singe-qubit state (no side information)⇢

QOTP is secure (proof idea)

X

k2{0,1}2

1

4
Enc(⇢, k)

X

P2{I,X,Z,XZ}

1

4
P⇢P †=

X

P

1

8
P (I+ ↵1X + ↵2Y + ↵3Z)P †=

Singe-qubit state (no side information)⇢

QOTP is secure (proof idea)

X

k2{0,1}2

1

4
Enc(⇢, k)

X

P

1

8
P IP † =

1

2
I

X

P2{I,X,Z,XZ}

1

4
P⇢P †=

X

P

1

8
P (I+ ↵1X + ↵2Y + ↵3Z)P †=

Singe-qubit state (no side information)⇢

QOTP is secure (proof idea)

X

k2{0,1}2

1

4
Enc(⇢, k)

X

P

1

8
P IP † =

1

2
I

X

P2{I,X,Z,XZ}

1

4
P⇢P †=

X

P

1

8
P (I+ ↵1X + ↵2Y + ↵3Z)P †=

Singe-qubit state (no side information)⇢

= 1

2
I +

QOTP is secure (proof idea)

X

k2{0,1}2

1

4
Enc(⇢, k)

X

P

1

8
P IP † =

1

2
I

X

P2{I,X,Z,XZ}

1

4
P⇢P †=

X

P

1

8
P (I+ ↵1X + ↵2Y + ↵3Z)P †=

Singe-qubit state (no side information)⇢

= 1

2
I +

QOTP is secure (proof idea)

X

k2{0,1}2

1

4
Enc(⇢, k)

X

P

1

8
P IP † =

1

2
I

X

P

↵1

8
PXP † =

1

8
(X +XXX + ZXZ +XZXZX) = 0

X

P2{I,X,Z,XZ}

1

4
P⇢P †=

X

P

1

8
P (I+ ↵1X + ↵2Y + ↵3Z)P †=

Singe-qubit state (no side information)⇢

= 1

2
I +

QOTP is secure (proof idea)

X

k2{0,1}2

1

4
Enc(⇢, k)

X

P

1

8
P IP † =

1

2
I

X

P

↵1

8
PXP † =

1

8
(X +XXX + ZXZ +XZXZX) = 0

X

P2{I,X,Z,XZ}

1

4
P⇢P †=

X

P

1

8
P (I+ ↵1X + ↵2Y + ↵3Z)P †=

Singe-qubit state (no side information)⇢

= 1

2
I + 0 +

QOTP is secure (proof idea)

X

k2{0,1}2

1

4
Enc(⇢, k)

X

P

1

8
P IP † =

1

2
I

X

P

↵1

8
PXP † =

1

8
(X +XXX + ZXZ +XZXZX) = 0

X

P2{I,X,Z,XZ}

1

4
P⇢P †=

X

P

1

8
P (I+ ↵1X + ↵2Y + ↵3Z)P †=

Singe-qubit state (no side information)⇢

= 1

2
I + 0 +0 +

QOTP is secure (proof idea)

X

k2{0,1}2

1

4
Enc(⇢, k)

X

P

1

8
P IP † =

1

2
I

X

P

↵1

8
PXP † =

1

8
(X +XXX + ZXZ +XZXZX) = 0

X

P2{I,X,Z,XZ}

1

4
P⇢P †=

X

P

1

8
P (I+ ↵1X + ↵2Y + ↵3Z)P †=

Singe-qubit state (no side information)⇢

= 1

2
I + 0 +0 + 0 =

1

2
I

QOTP is secure (proof idea)

X

k2{0,1}2

1

4
Enc(⇢, k)

X

P

1

8
P IP † =

1

2
I

X

P

↵1

8
PXP † =

1

8
(X +XXX + ZXZ +XZXZX) = 0

X

P2{I,X,Z,XZ}

1

4
P⇢P †=

X

P

1

8
P (I+ ↵1X + ↵2Y + ↵3Z)P †=

Singe-qubit state (no side information)⇢

= 1

2
I + 0 +0 + 0 =

1

2
I

Summary (Primitive I)

Summary (Primitive I)
❖ One-time pad hides all information about the message,

but requires a long key.

Summary (Primitive I)
❖ One-time pad hides all information about the message,

but requires a long key.

❖ Long keys can be distributed using QKD, or we can use
(quantum-safe) public-key cryptography

Summary (Primitive I)
❖ One-time pad hides all information about the message,

but requires a long key.

❖ Long keys can be distributed using QKD, or we can use
(quantum-safe) public-key cryptography

❖ Quantum one-time pad hides all information about a
quantum message using classical (but still long) keys.

Summary (Primitive I)
❖ One-time pad hides all information about the message,

but requires a long key.

❖ Long keys can be distributed using QKD, or we can use
(quantum-safe) public-key cryptography

❖ Quantum one-time pad hides all information about a
quantum message using classical (but still long) keys.

❖ We used the uncertainty principle to make sure we
only need finite keys.

Primitive II: Authentication

I. encryption II. authentication III. secret sharing Application: cloud computing

Authentication: definition

Authentication: definition
Alice Bob

k
k 2 {0, 1}`
m 2 {0, 1}n

Authentication: definition
Alice Bob

k
k 2 {0, 1}`
m 2 {0, 1}n

(m, t) where t = Sign(m, k)

Authentication: definition
Alice Bob

k
k 2 {0, 1}`
m 2 {0, 1}n

(m, t) where t = Sign(m, k)

Check(m, t, k)
outputs one of:
❖
❖ reject : ?

accept : m

Authentication: definition
Alice Bob

k
k 2 {0, 1}`
m 2 {0, 1}n

(m, t) where t = Sign(m, k)

❖ correct: = “accept: ”

Check(m, t, k)

Check(m, Sign(m, k), k) m

outputs one of:
❖
❖ reject : ?

accept : m

Authentication: definition
Alice Bob

k
k 2 {0, 1}`
m 2 {0, 1}n

(m, t) where t = Sign(m, k)

❖ correct: = “accept: ”

❖ efficient: Sign and Check are polynomial-time

Check(m, t, k)

Check(m, Sign(m, k), k) m

outputs one of:
❖
❖ reject : ?

accept : m

Authentication: definition
Alice Bob

k
k 2 {0, 1}`
m 2 {0, 1}n

(m, t) where t = Sign(m, k)

❖ correct: = “accept: ”

❖ efficient: Sign and Check are polynomial-time

❖ unforgeability: adversary cannot alter without being detected

Check(m, t, k)

Check(m, Sign(m, k), k)

m

m

outputs one of:
❖
❖ reject : ?

accept : m

Authentication: unforgeability

Authentication: unforgeability
adversary

Authentication: unforgeability
adversary

m
(m, t)

Sign

Authentication: unforgeability
adversary

Check
(m0, t0) accept : m0

m
(m, t)

Sign reject : ?

Authentication: unforgeability

simulator

adversary

Check
(m0, t0) accept : m0

m
(m, t)

Sign reject : ?

Authentication: unforgeability

simulator

adversary

Check
(m0, t0) accept : m0

m

m

(m, t)
Sign reject : ?

Authentication: unforgeability

simulator

adversary

Check
(m0, t0)

accept/reject

accept : m0
m

m

(m, t)
Sign reject : ?

Authentication: unforgeability

simulator

adversary

Check
(m0, t0)

accept/reject

accept : m0
m

m

(m, t)
Sign reject : ?

Replace
With ?

Authentication: example

Authentication: example
❖ Using pseudorandom function family {PRFk}k

Authentication: example
❖ Using pseudorandom function family {PRFk}k

Sign(m, k) := PRFk(m)

Authentication: example
❖ Using pseudorandom function family {PRFk}k

Sign(m, k) := PRFk(m)
Check(m, t, k) := (PRFk(m)

?
= t)

Authentication: example
❖ Using pseudorandom function family

❖ Security relies on the pseudorandomness: can a
quantum computer tell the difference from “real”
randomness?

{PRFk}k

Sign(m, k) := PRFk(m)
Check(m, t, k) := (PRFk(m)

?
= t)

Authentication: example
❖ Using pseudorandom function family

❖ Security relies on the pseudorandomness: can a
quantum computer tell the difference from “real”
randomness?

❖ Quantum-secure PRFs [Zha12]

{PRFk}k

Sign(m, k) := PRFk(m)
Check(m, t, k) := (PRFk(m)

?
= t)

[Zha12] Mark Zhandry: How to construct quantum random functions

Authenticating a quantum state
Alice Bob

k
k 2 {0, 1}`
m 2 {0, 1}n

(m, t) where t = Sign(m, k)

Check(m, t, k)
outputs one of:
❖
❖ reject : ?

accept : m

Authenticating a quantum state
Alice Bob

k
k 2 {0, 1}`
⇢ (n qubits)

(m, t) where t = Sign(m, k)

Check(m, t, k)
outputs one of:
❖
❖ reject : ?

accept : m

Authenticating a quantum state
Alice Bob

k
k 2 {0, 1}`
⇢ (n qubits)

� = Sign(⇢, k)

Check(m, t, k)
outputs one of:
❖
❖ reject : ?

accept : m

Authenticating a quantum state
Alice Bob

k
k 2 {0, 1}`
⇢ (n qubits)

� = Sign(⇢, k)

outputs one of:
❖
❖ reject : ?

accept : m

Check(�, k)

Authenticating a quantum state
Alice Bob

k
k 2 {0, 1}`
⇢ (n qubits)

� = Sign(⇢, k)

outputs one of:
❖
❖ reject : ?

accept : ⇢

Check(�, k)

Authenticating a quantum state

❖ Authentication implies encryption:

Alice Bob

k
k 2 {0, 1}`
⇢ (n qubits)

� = Sign(⇢, k)

outputs one of:
❖
❖ reject : ?

accept : ⇢

Check(�, k)

Authenticating a quantum state

❖ Authentication implies encryption:

❖ Measure 0/1 basis → disturb +/- basis

Alice Bob

k
k 2 {0, 1}`
⇢ (n qubits)

� = Sign(⇢, k)

outputs one of:
❖
❖ reject : ?

accept : ⇢

Check(�, k)

Authenticating a quantum state

❖ Authentication implies encryption:

❖ Measure 0/1 basis → disturb +/- basis

❖ Conversely: authenticate +/- basis → encrypt 0/1 basis

Alice Bob

k
k 2 {0, 1}`
⇢ (n qubits)

� = Sign(⇢, k)

outputs one of:
❖
❖ reject : ?

accept : ⇢

Check(�, k)

Example: trap code

[BGS13] Broadbent et al. (2013): Quantum One-Time Programs

Example: trap code

Sign:

[BGS13] Broadbent et al. (2013): Quantum One-Time Programs

Example: trap code

{
{

|02i�1i

|+ii

| iSign:

[BGS13] Broadbent et al. (2013): Quantum One-Time Programs

Example: trap code

error-
corr.
code{

{
|02i�1i

|+ii

| iSign:

[BGS13] Broadbent et al. (2013): Quantum One-Time Programs

Example: trap code

error-
corr.
code

⇡k

2
S3i

{
{

|02i�1i

|+ii

| iSign:

[BGS13] Broadbent et al. (2013): Quantum One-Time Programs

Example: trap code

error-
corr.
code

⇡k

2
S3i

{
{

|02i�1i

|+ii

| i

Q
O
T
P

Sign:

[BGS13] Broadbent et al. (2013): Quantum One-Time Programs

Example: trap code

error-
corr.
code

⇡k

2
S3i

data: needs
Protecting

{
{

|02i�1i

|+ii

| i

Q
O
T
P

Sign:

[BGS13] Broadbent et al. (2013): Quantum One-Time Programs

Example: trap code

error-
corr.
code

⇡k

2
S3i

data: needs
Protecting

|0> trap: 
detects 
bit flips

{
{

|02i�1i

|+ii

| i

Q
O
T
P

Sign:

[BGS13] Broadbent et al. (2013): Quantum One-Time Programs

Example: trap code

error-
corr.
code

⇡k

2
S3i

data: needs
Protecting

|0> trap: 
detects 
bit flips

|+> trap: 
detects 

phase flips

{
{

|02i�1i

|+ii

| i

Q
O
T
P

Sign:

[BGS13] Broadbent et al. (2013): Quantum One-Time Programs

Example: trap code

error-
corr.
code

⇡k

2
S3i

data: needs
Protecting

|0> trap: 
detects 
bit flips

|+> trap: 
detects 

phase flips

{
{

|02i�1i

|+ii

| i

Q
O
T
P

Sign:

Check: undo QOTP, undo permutation, check for errors, and
measure all traps (dummy qubits)
[BGS13] Broadbent et al. (2013): Quantum One-Time Programs

Summary (Primitive II)

Summary (Primitive II)

❖ Authentication makes sure a message is not altered after
it is signed.

Summary (Primitive II)

❖ Authentication makes sure a message is not altered after
it is signed.

❖ Pseudorandom function families can sign classical
messages, but they need to be post-quantum secure.

Summary (Primitive II)

❖ Authentication makes sure a message is not altered after
it is signed.

❖ Pseudorandom function families can sign classical
messages, but they need to be post-quantum secure.

❖ Quantum messages can be authenticated by protecting
the computational and Hadamard basis separately.

Summary (Primitive II)

❖ Authentication makes sure a message is not altered after
it is signed.

❖ Pseudorandom function families can sign classical
messages, but they need to be post-quantum secure.

❖ Quantum messages can be authenticated by protecting
the computational and Hadamard basis separately.

❖ Quantum authentication implies quantum encryption.

Primitive III: Secret Sharing

I. encryption II. authentication III. secret sharing Application: cloud computing

Secret sharing: definition

Secret sharing: definition

Secret sharing: definition

Secret sharing: definition

k = 0010110001

Secret sharing: definition

k = 0010110001

Secret sharing: definition

k = 0010110001
s1 s2

Secret sharing: definition

k = 0010110001

s1 s2

Secret sharing: definition

k = 0010110001

s1

s2

Secret sharing: definition

k = 0010110001

s1

s2

???

Secret sharing: definition

k = 0010110001
s1 s2

Secret sharing: definition

k = 0010110001
s1 s2

Secret sharing: definition

k = 0010110001
s1 s2 s3

❖ Dealer: knows secret (0010110001), hands out shares

Secret sharing: definition

k = 0010110001
s1 s2 s3

❖ Dealer: knows secret (0010110001), hands out shares

❖ (n,t) secret-sharing: any t out of n players can recover
the secret

Secret sharing: definition

k = 0010110001
s1 s2 s3

Secret sharing example (t=n)

Secret sharing example (t=n)

Secret sharing example (t=n)

k = 0010110001

Secret sharing example (t=n)

❖ Draw n-1 random strings

k = 0010110001

r1, r2, ..., rn�1

Secret sharing example (t=n)

❖ Draw n-1 random strings

❖ Set for

k = 0010110001

r1, r2, ..., rn�1

si := ri i  n� 1

Secret sharing example (t=n)

❖ Draw n-1 random strings

❖ Set for

❖ Set

k = 0010110001

r1, r2, ..., rn�1

si := ri i  n� 1

sn := k � s1 � s2 � · · ·� sn�1

Secret sharing example (t=n)

❖ Draw n-1 random strings

❖ Set for

❖ Set

k = 0010110001

r1, r2, ..., rn�1

si := ri i  n� 1

sn := k � s1 � s2 � · · ·� sn�1

s1 =

s2 =

s3 =

Secret sharing example (t=n)

❖ Draw n-1 random strings

❖ Set for

❖ Set

k = 0010110001

r1, r2, ..., rn�1

si := ri i  n� 1

sn := k � s1 � s2 � · · ·� sn�1

s1 =

s2 =

s3 =

1011000001
1101001110

Secret sharing example (t=n)

❖ Draw n-1 random strings

❖ Set for

❖ Set

k = 0010110001

r1, r2, ..., rn�1

si := ri i  n� 1

sn := k � s1 � s2 � · · ·� sn�1

s1 =

s2 =

s3 =

1011000001
1101001110
0100111110

Secret sharing example (t=n)

❖ Draw n-1 random strings

❖ Set for

❖ Set

k = 0010110001

r1, r2, ..., rn�1

si := ri i  n� 1

sn := k � s1 � s2 � · · ·� sn�1

s1 =

s2 =

s3 =

1011000001
1101001110
0100111110 � (addition

modulo 2)

Secret sharing example (t=n)

❖ Draw n-1 random strings

❖ Set for

❖ Set

k = 0010110001

r1, r2, ..., rn�1

si := ri i  n� 1

sn := k � s1 � s2 � · · ·� sn�1

s1 =

s2 =

s3 =

1011000001
1101001110
0100111110

0010110001

� (addition
modulo 2)

Secret sharing: considerations

Secret sharing: considerations

❖ For t = n, the randomness protocol is secure (<t players
learn nothing about the key k)

Secret sharing: considerations

❖ For t = n, the randomness protocol is secure (<t players
learn nothing about the key k)

❖ For t < n, more complicated protocol is needed. e.g.
Shamir (polynomials) or Blakley (hyperplanes)

Secret sharing: considerations

❖ For t = n, the randomness protocol is secure (<t players
learn nothing about the key k)

❖ For t < n, more complicated protocol is needed. e.g.
Shamir (polynomials) or Blakley (hyperplanes)

❖ How to distribute the secrets? What about
eavesdropping?

Quantumly sharing classical secrets

k 2 {0, 1}

Quantumly sharing classical secrets

r1

r2

r1 � r2
k 2 {0, 1}

Quantumly sharing classical secrets

r1

r2

r1 � r2
k � r1 � r2

k 2 {0, 1}

Quantumly sharing classical secrets

r1

r2

r1 � r2 k � r1 � r2

k 2 {0, 1}

Quantumly sharing classical secrets

r1

r2

r1 � r2
k 2 {0, 1}

Quantumly sharing classical secrets

r1

r2

r1 � r2

|GHZi = 1p
2
(|0i⌦3 + |1i⌦3)

k 2 {0, 1}

Quantumly sharing classical secrets

r1

r2

r1 � r2

|GHZi = 1p
2
(|0i⌦3 + |1i⌦3)

k 2 {0, 1}

Quantumly sharing classical secrets

r1

r2

r1 � r2

|GHZi = 1p
2
(|0i⌦3 + |1i⌦3)

k 2 {0, 1}

❖ measure in X or Y basis(|+i, |�i) (|0i+ i|1i, |0i � i|1i)

Quantumly sharing classical secrets

r1

r2

r1 � r2

|GHZi = 1p
2
(|0i⌦3 + |1i⌦3)

k 2 {0, 1}

❖ measure in X or Y basis

❖ publicly share the measurement basis (but not the result)

(|+i, |�i) (|0i+ i|1i, |0i � i|1i)

Example: X X X measurement

Example: X X X measurement
❖ Suppose everyone measures in X basis (prob 1/8):

Example: X X X measurement
❖ Suppose everyone measures in X basis (prob 1/8):

|GHZi = 1p
2
(|0i⌦3 + |1i⌦3)

Example: X X X measurement
❖ Suppose everyone measures in X basis (prob 1/8):

|GHZi = 1p
2
(|0i⌦3 + |1i⌦3) |0> = (|+> + |->) / √2

|1> = (|+> - |->) / √2

=
1

4
((|+i+ |�i)⌦3 + (|+i � |�i)⌦3)

Example: X X X measurement
❖ Suppose everyone measures in X basis (prob 1/8):

|GHZi = 1p
2
(|0i⌦3 + |1i⌦3)

=
1

2
(|+++i+ |+��i+ |�+�i+ |��+i)

|0> = (|+> + |->) / √2
|1> = (|+> - |->) / √2

Inter-
 ference

=
1

4
((|+i+ |�i)⌦3 + (|+i � |�i)⌦3)

Example: X X X measurement
❖ Suppose everyone measures in X basis (prob 1/8):

|GHZi = 1p
2
(|0i⌦3 + |1i⌦3)

=
1

2
(|+++i+ |+��i+ |�+�i+ |��+i)

|0> = (|+> + |->) / √2
|1> = (|+> - |->) / √2

Inter-
 ference

|r1 � r2 r1 r2i

=
1

4
((|+i+ |�i)⌦3 + (|+i � |�i)⌦3)

Example: X Y Y measurement

Example: X Y Y measurement
❖ Suppose Alice measures in X basis, Bob and Charlie in Y

basis (prob 1/8):

Example: X Y Y measurement
❖ Suppose Alice measures in X basis, Bob and Charlie in Y

basis (prob 1/8):

|GHZi = 1p
2
(|0i⌦3 + |1i⌦3)

Example: X Y Y measurement
❖ Suppose Alice measures in X basis, Bob and Charlie in Y

basis (prob 1/8):

|GHZi = 1p
2
(|0i⌦3 + |1i⌦3)

|0> = |+> + |->
 |1> = |+> - |->
 |0> = |0Y> + |1Y>
 |1>= -i |0Y> + i |1Y>

=
1

4
((|+i � |�i)⌦ (|0Y i+ |1Y i)⌦2

+(|+i � |�i)⌦ (�i|0Y i+ i|1Y i)⌦2

Example: X Y Y measurement
❖ Suppose Alice measures in X basis, Bob and Charlie in Y

basis (prob 1/8):

|GHZi = 1p
2
(|0i⌦3 + |1i⌦3)

|0> = |+> + |->
 |1> = |+> - |->
 |0> = |0Y> + |1Y>
 |1>= -i |0Y> + i |1Y>

Inter-
 ference

=
1

4
((|+i � |�i)⌦ (|0Y i+ |1Y i)⌦2

+(|+i � |�i)⌦ (�i|0Y i+ i|1Y i)⌦2

=
1

2
(|+ 0Y 1Y i+ |+ 1Y 0Y i+ |� 0Y 0Y i+ |� 1Y 1Y i)

Example: X Y Y measurement
❖ Suppose Alice measures in X basis, Bob and Charlie in Y

basis (prob 1/8):

|GHZi = 1p
2
(|0i⌦3 + |1i⌦3)

|0> = |+> + |->
 |1> = |+> - |->
 |0> = |0Y> + |1Y>
 |1>= -i |0Y> + i |1Y>

Inter-
 ference

|r1 � r2 � 1 r1 r2i

=
1

4
((|+i � |�i)⌦ (|0Y i+ |1Y i)⌦2

+(|+i � |�i)⌦ (�i|0Y i+ i|1Y i)⌦2

=
1

2
(|+ 0Y 1Y i+ |+ 1Y 0Y i+ |� 0Y 0Y i+ |� 1Y 1Y i)

Quantumly sharing classical secrets

Quantumly sharing classical secrets
measurements

with correlation:
measurements

without correlation:

Quantumly sharing classical secrets

XXX
XYY
YXY
YYX

measurements
with correlation:

measurements
without correlation:

Quantumly sharing classical secrets

XXX
XYY
YXY
YYX

XXY
XYX
YXX
YYY

measurements
with correlation:

measurements
without correlation:

Quantumly sharing classical secrets

XXX
XYY
YXY
YYX

XXY
XYX
YXX
YYY

measurements
with correlation:

measurements
without correlation:

prob. 1/2 prob. 1/2

Quantumly sharing classical secrets

XXX
XYY
YXY
YYX

XXY
XYX
YXX
YYY

measurements
with correlation:

measurements
without correlation:

❖ If the bases don’t match: try again (amplification)

prob. 1/2 prob. 1/2

Quantumly sharing classical secrets

XXX
XYY
YXY
YYX

XXY
XYX
YXX
YYY

measurements
with correlation:

measurements
without correlation:

❖ If the bases don’t match: try again (amplification)

❖ What about eavesdropping?

prob. 1/2 prob. 1/2

Quantumly sharing classical secrets

❖ If the bases don’t match: try again (amplification)

❖ What about eavesdropping?

Quantumly sharing classical secrets

❖ If the bases don’t match: try again (amplification)

❖ What about eavesdropping?

Quantumly sharing classical secrets

❖ If the bases don’t match: try again (amplification)

❖ What about eavesdropping?

X or Y

Quantumly sharing classical secrets

❖ If the bases don’t match: try again (amplification)

❖ What about eavesdropping?

X or Y

Eavesdropper protection: test rounds

Eavesdropper protection: test rounds
Test round: same as regular round

Eavesdropper protection: test rounds
Test round: same as regular round

uncorrelated bases:
pass

1/2

Eavesdropper protection: test rounds
Test round: same as regular round

uncorrelated bases:
pass

correlated bases:
share measurement

results

1/2 1/2

Eavesdropper protection: test rounds
Test round: same as regular round

uncorrelated bases:
pass

correlated bases:
share measurement

results

pass
= r1 � r2dealer’s

result

1/2 1/2

1/2

Eavesdropper protection: test rounds
Test round: same as regular round

uncorrelated bases:
pass

correlated bases:
share measurement

results

pass
= r1 � r2dealer’s

result
fail
6= r1 � r2dealer’s

result

1/2 1/2

1/2 1/2

Eavesdropper protection: test rounds
Test round: same as regular round

uncorrelated bases:
pass

correlated bases:
share measurement

results

If the eavesdropper measures in a different basis than C, he is
detected with probability 1/4. Repeat to amplify!

pass
= r1 � r2dealer’s

result
fail
6= r1 � r2dealer’s

result

1/2 1/2

1/2 1/2

Summary (Primitive III)

Summary (Primitive III)
❖ Sharing classical secrets: only if t out of n parties come

together, they can recover the secret

Summary (Primitive III)
❖ Sharing classical secrets: only if t out of n parties come

together, they can recover the secret

❖ Distributing shares can be done using the GHZ state.

Summary (Primitive III)
❖ Sharing classical secrets: only if t out of n parties come

together, they can recover the secret

❖ Distributing shares can be done using the GHZ state.

❖ We used entanglement to ensure correlation between
the shares.

Summary (Primitive III)
❖ Sharing classical secrets: only if t out of n parties come

together, they can recover the secret

❖ Distributing shares can be done using the GHZ state.

❖ We used entanglement to ensure correlation between
the shares.

❖ We used the fact that measurements disturb quantum
states to protect against eavesdropping.

Summary (Primitive III)
❖ Sharing classical secrets: only if t out of n parties come

together, they can recover the secret

❖ Distributing shares can be done using the GHZ state.

❖ We used entanglement to ensure correlation between
the shares.

❖ We used the fact that measurements disturb quantum
states to protect against eavesdropping.

❖ Side note: it is also possible to share quantum secrets.

Application: Cloud Computing

I. encryption II. authentication III. secret sharing Application: cloud computing

Quantum Cloud Computing [Chi05]

[Chi05] Childs: Secure Assisted Quantum Computation

Quantum Cloud Computing [Chi05]

[Chi05] Childs: Secure Assisted Quantum Computation

Quantum Cloud Computing [Chi05]

input  
quantum circuit

⇢

C

[Chi05] Childs: Secure Assisted Quantum Computation

Quantum Cloud Computing [Chi05]

input  
quantum circuit

⇢

C

[Chi05] Childs: Secure Assisted Quantum Computation

Quantum Cloud Computing [Chi05]

input  
quantum circuit

⇢

C

[Chi05] Childs: Secure Assisted Quantum Computation

Quantum Cloud Computing [Chi05]

input  
quantum circuit

⇢

C

❖ Can Alice let the cloud perform on , without giving
away any information about (privacy)?

⇢

⇢

C

[Chi05] Childs: Secure Assisted Quantum Computation

Quantum Cloud Computing [Chi05]

input  
quantum circuit

⇢

C

❖ Can Alice let the cloud perform on , without giving
away any information about (privacy)?

❖ Can she do so efficiently?

⇢

⇢

C

[Chi05] Childs: Secure Assisted Quantum Computation

Q. cloud computing: variations

Q. cloud computing: variations
❖ No communication during the computation:  

(quantum) homomorphic encryption [DSS16]

[DSS16] Dulek et al.: Quantum Homomorphic Encryption for Polynomial-Size Circuits

Q. cloud computing: variations
❖ No communication during the computation:  

(quantum) homomorphic encryption [DSS16]

❖ Completely classical client [CGJV17]

[DSS16] Dulek et al.: Quantum Homomorphic Encryption for Polynomial-Size Circuits
[CGJV17] Coladangelo et al.: Verifier-on-a-Leash: new schemes for verifiable delegated quantum computation,
with quasilinear resources

Q. cloud computing: variations
❖ No communication during the computation:  

(quantum) homomorphic encryption [DSS16]

❖ Completely classical client [CGJV17]

❖ The cloud server cannot learn the circuit/program:  
blind (quantum) computing [AS06]

[DSS16] Dulek et al.: Quantum Homomorphic Encryption for Polynomial-Size Circuits
[CGJV17] Coladangelo et al.: Verifier-on-a-Leash: new schemes for verifiable delegated quantum computation,
with quasilinear resources
[AS06] Arrighi, Salvail: Blind Quantum Computation

Q. cloud computing: variations
❖ No communication during the computation:  

(quantum) homomorphic encryption [DSS16]

❖ Completely classical client [CGJV17]

❖ The cloud server cannot learn the circuit/program:  
blind (quantum) computing [AS06]

❖ Verification of the result:  
Quantum computing on authenticated data [Bro15]

[DSS16] Dulek et al.: Quantum Homomorphic Encryption for Polynomial-Size Circuits
[CGJV17] Coladangelo et al.: Verifier-on-a-Leash: new schemes for verifiable delegated quantum computation,
with quasilinear resources
[AS06] Arrighi, Salvail: Blind Quantum Computation
[Bro15] Broadbent: How to verify a quantum computation

Preliminary: Clifford group

Preliminary: Clifford group
❖ Recall the Pauli group: P1 := {±(i)I,±(i)X,±(i)Y,±(i)Z}

Preliminary: Clifford group
❖ Recall the Pauli group:

❖ Clifford group: gates that commute with Pauli group:  
 
 

P1 := {±(i)I,±(i)X,±(i)Y,±(i)Z}

Cn := {U 2 U(2n) | 8P 2 Pn : UPU † 2 Pn}

Preliminary: Clifford group
❖ Recall the Pauli group:

❖ Clifford group: gates that commute with Pauli group:  
 
 

P1 := {±(i)I,±(i)X,±(i)Y,±(i)Z}

Cn := {U 2 U(2n) | 8P 2 Pn : UPU † 2 Pn}

HIH† = I
HXH† = Z
HZH† = X
HYH† = �Y

e.g.

Preliminary: Clifford group
❖ Recall the Pauli group:

❖ Clifford group: gates that commute with Pauli group:  
 
 

P1 := {±(i)I,±(i)X,±(i)Y,±(i)Z}

Cn := {U 2 U(2n) | 8P 2 Pn : UPU † 2 Pn}

HIH† = I
HXH† = Z
HZH† = X
HYH† = �Y

{H 2 C1

e.g.

Preliminary: Clifford group
❖ Recall the Pauli group:

❖ Clifford group: gates that commute with Pauli group:  
 
 

P1 := {±(i)I,±(i)X,±(i)Y,±(i)Z}

Cn := {U 2 U(2n) | 8P 2 Pn : UPU † 2 Pn}

HIH† = I
HXH† = Z
HZH† = X
HYH† = �Y

{H 2 C1

e.g. HI = IH

HX = ZH

HZ = XH

HY = Y H

Preliminary: Clifford group
❖ Recall the Pauli group:

❖ Clifford group: gates that commute with Pauli group:  
 
 

P1 := {±(i)I,±(i)X,±(i)Y,±(i)Z}

Cn := {U 2 U(2n) | 8P 2 Pn : UPU † 2 Pn}

HIH† = I
HXH† = Z
HZH† = X
HYH† = �Y

{H 2 C1

e.g.

Preliminary: Clifford group
❖ Recall the Pauli group:

❖ Clifford group: gates that commute with Pauli group:  
 
 

❖ is generated by

P1 := {±(i)I,±(i)X,±(i)Y,±(i)Z}

Cn := {U 2 U(2n) | 8P 2 Pn : UPU † 2 Pn}

HIH† = I
HXH† = Z
HZH† = X
HYH† = �Y

{H 2 C1

H, CNOT, P =


1 0
0 i

�
Cn

e.g.

Preliminary: Clifford group
❖ Recall the Pauli group:

❖ Clifford group: gates that commute with Pauli group:  
 
 

❖ is generated by

❖ For universal quantum computation, add

P1 := {±(i)I,±(i)X,±(i)Y,±(i)Z}

Cn := {U 2 U(2n) | 8P 2 Pn : UPU † 2 Pn}

HIH† = I
HXH† = Z
HZH† = X
HYH† = �Y

{H 2 C1

H, CNOT, P =


1 0
0 i

�
Cn

T =


1 0
0 e⇡i/4

�

e.g.

Cloud computing (for Cliffords)
input (1 qubit)  
quantum circuit C

| i

Cloud computing (for Cliffords)
input (1 qubit)  
quantum circuit C

| i

1. Alice encrypts with one-time pad:  
(key: ())

| i XaZb| i
a, b

Cloud computing (for Cliffords)
input (1 qubit)  
quantum circuit C

| i

1. Alice encrypts with one-time pad:  
(key: ())

2. For every gate G in circuit C:

| i XaZb| i
a, b

Cloud computing (for Cliffords)
input (1 qubit)  
quantum circuit C

| i

1. Alice encrypts with one-time pad:  
(key: ())

2. For every gate G in circuit C:

1. Server applies G to the ciphertext:

| i XaZb| i

GXaZb| i

a, b

Cloud computing (for Cliffords)
input (1 qubit)  
quantum circuit C

| i

1. Alice encrypts with one-time pad:  
(key: ())

2. For every gate G in circuit C:

1. Server applies G to the ciphertext:

2. Alice updates her key

| i XaZb| i

GXaZb| i

GXaZb| i = Xa0
Zb0G| i

a, b

Cloud computing (for Cliffords)
input (1 qubit)  
quantum circuit C

| i

1. Alice encrypts with one-time pad:  
(key: ())

2. For every gate G in circuit C:

1. Server applies G to the ciphertext:

2. Alice updates her key

3. Alice decrypts one-time pad with updated key

| i XaZb| i

GXaZb| i

GXaZb| i = Xa0
Zb0G| i

a, b

Cloud computing (for non-Clifford)

Cloud computing (for non-Clifford)
❖ Clifford gates were “easy” because they commute with

the quantum one-time pad

Cloud computing (for non-Clifford)
❖ Clifford gates were “easy” because they commute with

the quantum one-time pad

❖ T-gate: TXaZb| i = P aXaZbT | i

Cloud computing (for non-Clifford)
❖ Clifford gates were “easy” because they commute with

the quantum one-time pad

❖ T-gate: TXaZb| i = P aXaZbT | i
Encrypted output

Error

Cloud computing (for non-Clifford)
❖ Clifford gates were “easy” because they commute with

the quantum one-time pad

❖ T-gate: TXaZb| i = P aXaZbT | i
Encrypted output

Error

Cloud computing (for non-Clifford)
❖ Clifford gates were “easy” because they commute with

the quantum one-time pad

❖ T-gate:

❖ Server does not (and should not) know

TXaZb| i = P aXaZbT | i
Encrypted output

a

Error

Cloud computing (for non-Clifford)
❖ Clifford gates were “easy” because they commute with

the quantum one-time pad

❖ T-gate:

❖ Server does not (and should not) know

❖ Childs 2005: server sends qubit to Alice, who swaps it
out whenever . Server always applies P-correction.

TXaZb| i = P aXaZbT | i
Encrypted output

a

a = 0

Error

Cloud computing (for non-Clifford)
❖ Clifford gates were “easy” because they commute with

the quantum one-time pad

❖ T-gate:

❖ Server does not (and should not) know

❖ Childs 2005: server sends qubit to Alice, who swaps it
out whenever . Server always applies P-correction.

❖ Alternative: magic-state computation

TXaZb| i = P aXaZbT | i
Encrypted output

a

a = 0

Magic-state computation

Magic-state computation
P |+i

↵|0i+ �|1i c 2 {0, 1}

Magic-state computation
P |+i

↵|0i+ �|1i c 2 {0, 1}
↵|00i+ �|01i

+ i↵|10i+ i�|11i

Magic-state computation
P |+i

↵|0i+ �|1i c 2 {0, 1}
↵|00i+ �|01i

+ i↵|10i+ i�|11i
↵|00i+ �|01i

+ i�|10i+ i↵|11i

Magic-state computation
P |+i

↵|0i+ �|1i c 2 {0, 1}
↵|00i+ �|01i

+ i↵|10i+ i�|11i
↵|00i+ �|01i

+ i�|10i+ i↵|11i

c = 0 : ↵|0i+ i�|1i = P | i
c = 1 : �|0i+ i↵|1i = iXZP | i

Magic-state computation
P |+i

↵|0i+ �|1i c 2 {0, 1}
↵|00i+ �|01i

+ i↵|10i+ i�|11i
↵|00i+ �|01i

+ i�|10i+ i↵|11i

c = 0 : ↵|0i+ i�|1i = P | i
c = 1 : �|0i+ i↵|1i = iXZP | i

|+i

↵|0i+ �|1i c 2 {0, 1}

Magic-state computation
P |+i

↵|0i+ �|1i c 2 {0, 1}
↵|00i+ �|01i

+ i↵|10i+ i�|11i
↵|00i+ �|01i

+ i�|10i+ i↵|11i

c = 0 : ↵|0i+ i�|1i = P | i
c = 1 : �|0i+ i↵|1i = iXZP | i

|+i

↵|0i+ �|1i c 2 {0, 1}
↵|00i+ �|01i
+ ↵|10i+ �|11i

Magic-state computation
P |+i

↵|0i+ �|1i c 2 {0, 1}
↵|00i+ �|01i

+ i↵|10i+ i�|11i
↵|00i+ �|01i

+ i�|10i+ i↵|11i

c = 0 : ↵|0i+ i�|1i = P | i
c = 1 : �|0i+ i↵|1i = iXZP | i

|+i

↵|0i+ �|1i c 2 {0, 1}
↵|00i+ �|01i
+ ↵|10i+ �|11i

↵|00i+ �|01i
+ �|10i+ ↵|11i

Magic-state computation
P |+i

↵|0i+ �|1i c 2 {0, 1}
↵|00i+ �|01i

+ i↵|10i+ i�|11i
↵|00i+ �|01i

+ i�|10i+ i↵|11i

c = 0 : ↵|0i+ i�|1i = P | i
c = 1 : �|0i+ i↵|1i = iXZP | i

|+i

↵|0i+ �|1i c 2 {0, 1}
↵|00i+ �|01i
+ ↵|10i+ �|11i

↵|00i+ �|01i
+ �|10i+ ↵|11i

c = 0 : ↵|0i+ �|1i = | i
c = 1 : �|0i+ ↵|1i = X| i

Magic-state computation
P |+i

↵|0i+ �|1i c 2 {0, 1}
↵|00i+ �|01i

+ i↵|10i+ i�|11i
↵|00i+ �|01i

+ i�|10i+ i↵|11i

c = 0 : ↵|0i+ i�|1i = P | i
c = 1 : �|0i+ i↵|1i = iXZP | i

|+i

↵|0i+ �|1i c 2 {0, 1}
↵|00i+ �|01i
+ ↵|10i+ �|11i

↵|00i+ �|01i
+ �|10i+ ↵|11i

c = 0 : ↵|0i+ �|1i = | i
c = 1 : �|0i+ ↵|1i = X| i

applies P, applies identity (up to Paulis)P |+i |+i

Error

TXaZb| i = P aXaZbT | i
Encrypted output

a

❖ T-gate:

❖ Server does not (and should not) know

Cloud computing (for non-Clifford)

Error

TXaZb| i = P aXaZbT | i
Encrypted output

a

❖ T-gate:

❖ Server does not (and should not) know

❖ Alice sends (encrypted version of)

Cloud computing (for non-Clifford)

P a|+i

Error

TXaZb| i = P aXaZbT | i
Encrypted output

a

❖ T-gate:

❖ Server does not (and should not) know

❖ Alice sends (encrypted version of)

❖ Server performs CNOT and measurement, and sends the
result () to Alice

Cloud computing (for non-Clifford)

P a|+i

c 2 {0, 1}

Error

TXaZb| i = P aXaZbT | i
Encrypted output

a

❖ T-gate:

❖ Server does not (and should not) know

❖ Alice sends (encrypted version of)

❖ Server performs CNOT and measurement, and sends the
result () to Alice

❖ Alice updates keys for CNOT and measurement outcome

Cloud computing (for non-Clifford)

P a|+i

c 2 {0, 1}

Q. cloud computing: variations
❖ No communication during the computation:  

(quantum) homomorphic encryption [DSS16]

❖ Completely classical client [CGJV17]

❖ The cloud server cannot learn the circuit/program:  
blind (quantum) computing [AS06]

❖ Verification of the result:  
Quantum computing on authenticated data [Bro15]

[DSS16] Dulek et al.: Quantum Homomorphic Encryption for Polynomial-Size Circuits

[CGJV17] Coladangelo et al.: Verifier-on-a-Leash: new schemes for verifiable delegated quantum computation,
with quasilinear resources

[AS06] Arrighi, Salvail: Blind Quantum Computation

[Bro15] Broadbent: How to verify a quantum computation

Q. cloud computing: variations
❖ No communication during the computation:  

(quantum) homomorphic encryption [DSS16]

❖ Completely classical client [CGJV17]

❖ The cloud server cannot learn the circuit/program:  
blind (quantum) computing [AS06]

❖ Verification of the result:  
Quantum computing on authenticated data [Bro15]

[DSS16] Dulek et al.: Quantum Homomorphic Encryption for Polynomial-Size Circuits

[CGJV17] Coladangelo et al.: Verifier-on-a-Leash: new schemes for verifiable delegated quantum computation,
with quasilinear resources

[AS06] Arrighi, Salvail: Blind Quantum Computation

[Bro15] Broadbent: How to verify a quantum computation

Q. cloud computing: variations
❖ No communication during the computation:  

(quantum) homomorphic encryption [DSS16]

❖ Completely classical client [CGJV17]

❖ The cloud server cannot learn the circuit/program:  
blind (quantum) computing [AS06]

❖ Verification of the result:  
Quantum computing on authenticated data [Bro15]

[DSS16] Dulek et al.: Quantum Homomorphic Encryption for Polynomial-Size Circuits

[CGJV17] Coladangelo et al.: Verifier-on-a-Leash: new schemes for verifiable delegated quantum computation,
with quasilinear resources

[AS06] Arrighi, Salvail: Blind Quantum Computation

[Bro15] Broadbent: How to verify a quantum computation

❖ Prepare magic states in advance for a = 0 and a = 1

Q. cloud computing: variations
❖ No communication during the computation:  

(quantum) homomorphic encryption [DSS16]

❖ Completely classical client [CGJV17]

❖ The cloud server cannot learn the circuit/program:  
blind (quantum) computing [AS06]

❖ Verification of the result:  
Quantum computing on authenticated data [Bro15]

[DSS16] Dulek et al.: Quantum Homomorphic Encryption for Polynomial-Size Circuits

[CGJV17] Coladangelo et al.: Verifier-on-a-Leash: new schemes for verifiable delegated quantum computation,
with quasilinear resources

[AS06] Arrighi, Salvail: Blind Quantum Computation

[Bro15] Broadbent: How to verify a quantum computation

❖ Prepare magic states in advance for a = 0 and a = 1

❖ Entangle them in a clever way such that the server,
using Enc(a) only, can select the correct one

Q. cloud computing: variations
❖ No communication during the computation:  

(quantum) homomorphic encryption [DSS16]

❖ Completely classical client [CGJV17]

❖ The cloud server cannot learn the circuit/program:  
blind (quantum) computing [AS06]

❖ Verification of the result:  
Quantum computing on authenticated data [Bro15]

[DSS16] Dulek et al.: Quantum Homomorphic Encryption for Polynomial-Size Circuits

[CGJV17] Coladangelo et al.: Verifier-on-a-Leash: new schemes for verifiable delegated quantum computation,
with quasilinear resources

[AS06] Arrighi, Salvail: Blind Quantum Computation

[Bro15] Broadbent: How to verify a quantum computation

Q. cloud computing: variations
❖ No communication during the computation:  

(quantum) homomorphic encryption [DSS16]

❖ Completely classical client [CGJV17]

❖ The cloud server cannot learn the circuit/program:  
blind (quantum) computing [AS06]

❖ Verification of the result:  
Quantum computing on authenticated data [Bro15]

[DSS16] Dulek et al.: Quantum Homomorphic Encryption for Polynomial-Size Circuits

[CGJV17] Coladangelo et al.: Verifier-on-a-Leash: new schemes for verifiable delegated quantum computation,
with quasilinear resources

[AS06] Arrighi, Salvail: Blind Quantum Computation

[Bro15] Broadbent: How to verify a quantum computation

Q. cloud computing: variations
❖ No communication during the computation:  

(quantum) homomorphic encryption [DSS16]

❖ Completely classical client [CGJV17]

❖ The cloud server cannot learn the circuit/program:  
blind (quantum) computing [AS06]

❖ Verification of the result:  
Quantum computing on authenticated data [Bro15]

[DSS16] Dulek et al.: Quantum Homomorphic Encryption for Polynomial-Size Circuits

[CGJV17] Coladangelo et al.: Verifier-on-a-Leash: new schemes for verifiable delegated quantum computation,
with quasilinear resources

[AS06] Arrighi, Salvail: Blind Quantum Computation

[Bro15] Broadbent: How to verify a quantum computation

❖ Talk to two (noncommunicating) cloud servers

Q. cloud computing: variations
❖ No communication during the computation:  

(quantum) homomorphic encryption [DSS16]

❖ Completely classical client [CGJV17]

❖ The cloud server cannot learn the circuit/program:  
blind (quantum) computing [AS06]

❖ Verification of the result:  
Quantum computing on authenticated data [Bro15]

[DSS16] Dulek et al.: Quantum Homomorphic Encryption for Polynomial-Size Circuits

[CGJV17] Coladangelo et al.: Verifier-on-a-Leash: new schemes for verifiable delegated quantum computation,
with quasilinear resources

[AS06] Arrighi, Salvail: Blind Quantum Computation

[Bro15] Broadbent: How to verify a quantum computation

❖ Talk to two (noncommunicating) cloud servers

❖ Use the second server to prepare the correct magic
states

Q. cloud computing: variations
❖ No communication during the computation:  

(quantum) homomorphic encryption [DSS16]

❖ Completely classical client [CGJV17]

❖ The cloud server cannot learn the circuit/program:  
blind (quantum) computing [AS06]

❖ Verification of the result:  
Quantum computing on authenticated data [Bro15]

[DSS16] Dulek et al.: Quantum Homomorphic Encryption for Polynomial-Size Circuits

[CGJV17] Coladangelo et al.: Verifier-on-a-Leash: new schemes for verifiable delegated quantum computation,
with quasilinear resources

[AS06] Arrighi, Salvail: Blind Quantum Computation

[Bro15] Broadbent: How to verify a quantum computation

Q. cloud computing: variations
❖ No communication during the computation:  

(quantum) homomorphic encryption [DSS16]

❖ Completely classical client [CGJV17]

❖ The cloud server cannot learn the circuit/program:  
blind (quantum) computing [AS06]

❖ Verification of the result:  
Quantum computing on authenticated data [Bro15]

[DSS16] Dulek et al.: Quantum Homomorphic Encryption for Polynomial-Size Circuits

[CGJV17] Coladangelo et al.: Verifier-on-a-Leash: new schemes for verifiable delegated quantum computation,
with quasilinear resources

[AS06] Arrighi, Salvail: Blind Quantum Computation

[Bro15] Broadbent: How to verify a quantum computation

Computing on authenticated data

Computing on authenticated data

❖ Verify that C was applied (and not some other circuit)

Computing on authenticated data

❖ Verify that C was applied (and not some other circuit)

❖ Replace primitive: authentication instead of encryption

Computing on authenticated data

❖ Verify that C was applied (and not some other circuit)

❖ Replace primitive: authentication instead of encryption

❖ Update authentication key during computation [Bro15]

[Bro15] Broadbent: How to verify a quantum computation

Computing on authenticated data

❖ Verify that C was applied (and not some other circuit)

❖ Replace primitive: authentication instead of encryption

❖ Update authentication key during computation [Bro15]

❖ Can even be combined with homomorphic encryption!
[ADSS17]

[Bro15] Broadbent: How to verify a quantum computation
[ADSS17] Alagic et al.: Quantum Fully Homomorphic Encryption with Verification

Summary (Application I)

Summary (Application I)
❖ Alice can outsource her quantum computation to an

(untrusted) cloud service without giving up privacy.

Summary (Application I)
❖ Alice can outsource her quantum computation to an

(untrusted) cloud service without giving up privacy.

❖ We used magic-state computation (which relies on
entanglement) to correct for errors during computation.

Summary (Application I)
❖ Alice can outsource her quantum computation to an

(untrusted) cloud service without giving up privacy.

❖ We used magic-state computation (which relies on
entanglement) to correct for errors during computation.

❖ We can use more complicated entanglement to eliminate
communication entirely (homomorphic encryption)

Summary (Application I)
❖ Alice can outsource her quantum computation to an

(untrusted) cloud service without giving up privacy.

❖ We used magic-state computation (which relies on
entanglement) to correct for errors during computation.

❖ We can use more complicated entanglement to eliminate
communication entirely (homomorphic encryption)

❖ We can replace the encryption primitive with the
authentication primitive in order to gain verification.

Summary (morning session)

Summary (morning session)
❖ Can quantum computing break cryptographic primitives?

Summary (morning session)
❖ Can quantum computing break cryptographic primitives?

❖ Yes: pseudorandom functions used in authentication

Summary (morning session)
❖ Can quantum computing break cryptographic primitives?

❖ Yes: pseudorandom functions used in authentication

❖ Yes: public-key cryptography

Summary (morning session)
❖ Can quantum computing break cryptographic primitives?

❖ Yes: pseudorandom functions used in authentication

❖ Yes: public-key cryptography

❖ Most symmetric-key cryptography (e.g. one-time pad) remains secure

Summary (morning session)
❖ Can quantum computing break cryptographic primitives?

❖ Yes: pseudorandom functions used in authentication

❖ Yes: public-key cryptography

❖ Most symmetric-key cryptography (e.g. one-time pad) remains secure

❖ Can quantum computing improve cryptographic primitives?

Summary (morning session)
❖ Can quantum computing break cryptographic primitives?

❖ Yes: pseudorandom functions used in authentication

❖ Yes: public-key cryptography

❖ Most symmetric-key cryptography (e.g. one-time pad) remains secure

❖ Can quantum computing improve cryptographic primitives?

❖ Yes: key distribution, secret sharing (eavesdropper protection)

Summary (morning session)
❖ Can quantum computing break cryptographic primitives?

❖ Yes: pseudorandom functions used in authentication

❖ Yes: public-key cryptography

❖ Most symmetric-key cryptography (e.g. one-time pad) remains secure

❖ Can quantum computing improve cryptographic primitives?

❖ Yes: key distribution, secret sharing (eavesdropper protection)

❖ What quantum applications are desirable?

Summary (morning session)
❖ Can quantum computing break cryptographic primitives?

❖ Yes: pseudorandom functions used in authentication

❖ Yes: public-key cryptography

❖ Most symmetric-key cryptography (e.g. one-time pad) remains secure

❖ Can quantum computing improve cryptographic primitives?

❖ Yes: key distribution, secret sharing (eavesdropper protection)

❖ What quantum applications are desirable?

❖ Cloud computing: use quantum primitives such as encryption, authentication

Summary (morning session)
❖ Can quantum computing break cryptographic primitives?

❖ Yes: pseudorandom functions used in authentication

❖ Yes: public-key cryptography

❖ Most symmetric-key cryptography (e.g. one-time pad) remains secure

❖ Can quantum computing improve cryptographic primitives?

❖ Yes: key distribution, secret sharing (eavesdropper protection)

❖ What quantum applications are desirable?

❖ Cloud computing: use quantum primitives such as encryption, authentication

❖ Use entanglement to correct errors

Summary (morning session)
❖ Can quantum computing break cryptographic primitives?

❖ Yes: pseudorandom functions used in authentication

❖ Yes: public-key cryptography

❖ Most symmetric-key cryptography (e.g. one-time pad) remains secure

❖ Can quantum computing improve cryptographic primitives?

❖ Yes: key distribution, secret sharing (eavesdropper protection)

❖ What quantum applications are desirable?

❖ Cloud computing: use quantum primitives such as encryption, authentication

❖ Use entanglement to correct errors

Thank you for your attention!

