PRINCIPLES FOR
QUANTUM
ALGORITHMS

Johannes Bausch

Quantum Information for Developers 2018

OVERVIEW

Goal: Get an intuitive understanding of quantum
algorithm design.

Real goal: Thereis a lot of algorithms out there. Make
use of them.

SESSION 1

e Warmup: Grover Search
e Brief Recap:
s Complexity Classes
= Basic Arithmetic
= Qudits
o Szegedy Walks: better than flipping a coin
e Quantum Backtracking

SESSION 2

e Warmup: Let's predict (in retrospect) who wins the
World Cup

e Gate Teleportation and Clifford Circuits: Magic!

e Repeat until Success

e How to load data into a quantum memory

BONUS

e Quantum Machine Learning
e Hamiltonian Simulation

SESSION 1

COMPLEXITY CLASSES

1.P
2. BPP
3. NP, MA

»

e PTIME, "poly-time"; L = LyrsULNo
e Foragiven input of size n, a classical Turing

Machine can decide the problem in polynomial
runtime.

e For circuits: family of Boolean circuits C,, : n € N,
such that there exists a TM M which, on input 1"
outputs C,,, in poly-time.

e Example: unstructured search, computing digits of
T

BPP

e Bounded-error poly-time; £ = LyrsULNo
e Same as P, but you have coins

{P(M(w) =1)> % z¢€ Lygs
P(M(xz) =1)

VA

% r € Lygs

BPP

« Bounded-error poly-time; £ = LyrsULNo
e Same as P, but you have coins

{

P(M(z) = 1)

P(M(z) = 1)

>

A

1
2
1
2

I

L

L

—C

—C

r € Lygs
T & £YES

BPP

e Bounded-error poly-time; £ = LyrsULNo
e Same as P, but you have coins

{IP(M(:::) =1)>1-271) ¢ Lygg
P(M(z) = 1) < 277 z € Lygs

PROBABILITY AMPLIFICATION

X outcome of run ¢, coin flip w/ prob 1/2 + q.
St . — Zt Xt.
Let E(.S;) := tq, then Var(S;) = tq(1 — q).

Chebyshev's inequality: Majority voting. Denote with
Ay

P(Ai(z) = 1) = B(S; > t/2)

PROBABILITY AMPLIFICATION

Chernoff bound:

P(S: < [¢/2]) < exp -—i (q - l>2-

PROBABILITY AMPLIFICATION

Takehome Message:

The output probability of your
randomized algorithm matters less
than you think.

But:

It does matter.

NP

e "Non-deterministic poly-time"

e Any set of problems for which YES/NO can be
decided with a P machine.

e Example: 3SAT, Knapsack, Subset Sum, Travelling
Salesman, Hamiltonian Cycle

MA

e "Merlin-Arthur"

e Any set of problems for which YES/NO can be
decided with a BPP machine

e Probabilities inherited from BPP

e Example: stoquastic k-SAT

BQP

e "Bounded-error quantum poly-time"
e Fora given input of size n, a quantum Turing Machine can

decide the problem in polynomial runtime.

BUT: QTM's ARE DIFFICULT.

e For circuits: family of quantum circuits C,, : n € N, such
that there exists a classical TM M which, on input 1"
outputs C,,, in poly-time.

e Same acceptance/rejection bounds as BPP
e Example: Prime Factoring

QMA

e "Quantum Merlin-Arthur"

e Any set of problems for which YES/NO can be
decided with a BQP machine

e Probabilities inherited from BQP

e Example: the local Hamiltonian problem

A FEW KNOWN RELATIONS

P C BPP C BQP

P C NP C MA C QMA
BPP C MA
BQP C QMA

BASIC ARITHMETIC
OPERATIONS

IMPORTANT GATES

H,X,Y,Z, TS
CNOT, CCNOT (Toffoli)
Controlled-U

-

a) 2 la+b mod 2")

We use QFT.
2" 1

F 1 at
a > = exp| — ||t
05 Sew()0
F

o) > e l6a(@) @ [82(a)) © 161 (@)
where |4(a)) = (10) + exp(a/24))|1))/v2

Remember: exp(a/Qk) = 0.a - - a2a1

exp(0.ag - - - asay))]

1))/v2

#r(a)) = (|0) + exp(0.ax - - - a201))[1)) /2

- exp(0.ag - - - azaq -

-0.0¢))[1)) /4

dr(a)) = (|0)
Then
— (10) -
— (]0)

exp(0.ay - - - aza4

O.bkbk_l))‘]

— (|O> T eXp(O-ak - AoA1 + O°bkbk—1 e

Gates work on qubits. But if you
program in python, you don't think in
bits.

THINK OF QUDITS

QUDIT LAND

e Take some numbera € N
e Encodeitinn = [log, a] many qubits € (C*)®".
e Treatit as one quditin C*

0 1 O 0o ... 1 0
0 0 1 o --- 0 1
— 10

COMPLEXITY OF BASIC
ARITHMETIC OPERATIONS

Don't expect a speedup.

HIGH-LEVEL ALGORITHMS

https://math.nist.gov/quantum/zoo/

CLASSICAL RANDOM WALKS

1. Markov chain: Graph G = (V, E) with transition

probabilities p.,e € E

2. We will usually assume ergodicity (non-patologic)
and symmetry (undirected)

3. Classically: described by stochastic matrix M such
that Mx; = o401

What would be a good quantum analogue of this?

(=]
iis
=]

=]
b
Ly

D20

L=l
"
(=]

_4::-

QUANTUM WALKS

1. Start with a bipartite Hilbert space C? ® (CL, which is

and location space, respectively
2. Quantum walk on a line (Aharonov): perform a coin fli

shift:
H 1 s 1
0)[2) >ﬂ(\0>+ll>)\l>= > 5|0l —1) -

3. Continuous time (Farhi)

4. Finding marked vertices in graph (Szegedy)
e How do we make the walk detect marked elements:
e What's the speedup?

(=]
iis
=]

=]
b
Ly

D20

L=l
"
(=]

_4::-

=]
iis
(=]

=
b
14

020

oly

_4::-

SZEGEDY WALKS

Walk on a graph G = (V, E) with
transition probabilities py,, to find some
target.

e LetH = C" ® C" represent two copies of the graph.
e computational basis |z,y) : z,y € V

e Define
W)) ® Z \/pw,y|y
®y) = Z \/—pwy‘m> ® |y)

Iterate the reflections

1. Walk on the edges of the graph: each map maps an
edge |z, y) to a superposition of edges (Santos).

2. How can we make it stop at a marked vertex
x € M?We have to redefine the transition
probabilities

ABSORBING RANDOM WALK

If pzy is original transition probability, and M a set of
marked vertices, then define

p, . Pzxy mgM
v Opy T EM

Initial state is statlonary distribution of graph

4(0) me y)

ABSORBING RANDOM WALK

One can show that

1. The weight does not stay at the marked vertex—
since the evolution is unitary

2. If there arem = | M| out of n = | V| marked
vertices, then a marked element will be measured

e withint = O(4/n/m) steps, and
e with probability > 1/2 + O(\/m/n)

Great—but if we already know the
solution in order to modify the original
transition probabilities p,,, for all
elementsinx € M, why do we need
to look for them at all?

ORACLES

ORACLES AND SZEGEDY WALKS

1. Standard phase kickback: the oracle maps
) — —|z)iffe € M

2. Equivalent operation: reflection around marked
elements Ryr :=2) ./ |x)z| — 1,

3. Promote to operatoron H (= C" @ C"):
R=R®1,

4. Changewalkto R4 RpRR,sRpR...

ORACLES AND SZEGEDY WALKS

One can show that the following states span invariant
subspacesunderU = R4 RpR:

1
0,0) =~ 3 [0y

T,y M
TFY

ab)i=—— Y |zy

\/n — 1 xZM,ye M
1
b,a) := — x,

M ,yg M

1. This means that the operator U is a rotation in three
dimensions:

cos? ¢ cospsing —sing@
U = sin ¢ — COS @ 0
COS ¢ sin ¢ sin? ¢ COS @

2. The initial state is roughly |a, a)

3. Repeated applications of U mapitto |b, a)

4. Measurement returns a marked element with
probability 1

5. Number of timesteps O(y/n/m).

So we can use Szegedy walks to find
marked elements in a graph, even if the
vertex is determined by a subroutine.

But what if we don't know the graph
beforehand?

BACKTRACKING

BACKTRACKING

Algorithm to solve constraint satisfaction problems
Tree exploration, where vertices are partial solutions
Early dropout: often better than brute force
Examples: Sudoku solver, SAT solver

BACKTRACKING
f:{1,...,d}" — {true, false}
Algorithm:

def backtrack(f, x : list

1f f£f(*x) == True:
print ("solution found:", x)
return True

if £f(*x) == False:
return False

for 1 in range(d) :
if backtrack (f,
return True
return False

BACKTRACKING

Query complexity:

brute force d"™
Grover dn/2
backtracking ih

quantum backtracking O(+/Tnlog(1/9))

1.0 < 0 < 1failure probability
2. to also find a solution, extra n log n.
3. uses poly(n) space

QUANTUM BACKTRACKING

Ingredients:

1. Quantum Phase Estimation, to differentiate when a
unitary U has eigenvalue 1: e.g. for

1
= (y o)
O elOé

2. If for two states, |||11) — [¥2)]| = €, theniif
measured in the computational basis, the total
variation distance is < €

QUANTUM BACKTRACKING

We will look at the special case of trees where one
starts at the root of the tree.

e Tverticeslabeledr,1,...,1 — 1, r being the root
e Distance from root < n; denote with £(7)

e Aisthevertices with even ¢, B with odd ¢

e Writex — yifyisachildofx

e d, isthe degree of vertex x:

g {ly:x—y}H+1 x#r
i {y:z — y} otherwise

QUANTUM BACKTRACKING
e Labelstates |r),|1),...,|T —1)

e Define a diffusion operator D, that only requires local knowledge
of the tree:

1. If z ismarked, D, = 1p
2. Otherwise, and if & # r,then D, = 17 — 2|1, X, | with

1
) = <w> Zm)

Y:r—y
3. D, = 17 — 2|3, X1, | with

1
9e) = Nigrr (fc>+x/ﬁ > y>)

Y:r—Y

e let Ry = @xEA D,,Rp = ’7°><7°| + @:L'EBD

Why diffusion operator?

Think of a vertex x in the tree that
D, = 17 — 2|3, X1, | actson. Then e.g.

1 1 1 1
1 1 0 0
vl = [1 01
1 0 0 1

is like the adjacency matrix of that graph segment; D,
is thus like a Laplace operator.

Algorithm:

1. Repeat K times:
e applyQPEto R4 Rp
e if eigenvalue is 1, accept, else reject

2. If the number of acceptance is > 3K /8, a marked
vertex exists.

Why does this work?

1. If x ismarked, D, = 17
2. Otherwise, D, diffuses the weight.
3. D,, where ris the root element, also concentrates

weight around 7.

This means that if there is no marked element in the
tree, there will be a single eigenvector with eigenvalue
1. This eigenvector is roughly | 7).

SESSION 2

WHO WON THE WORLD CUP?

https://bitbucket.org/rumschuettel/quantum-ranking

GATE TELEPORTATION

Quantum state teleportation can also be used to
teleport operations around.

in) —

C1

Cy

— |out)

and

in) —

.

|<I)+>®” {

X(}fzg

— |out)

CLIFFORD CIRCUITS

1. Preparation of computational basis states, e.g. |0)

2. gates: CNOT, H, S, Paulis (normalizers of the Pauli
group)

3. Measurement in the computational basis.

e Those are not yet universal

e In fact, they are classically simulable ([Gottesman-
Knill])

SO WHY ARE THEY INTERESTING?

) { ’
xazB — Co - P — |out)
3. in) —
T
)"
—1 Oy P’ P— |0ut>

P, P’ are depth-1 Pauli circuits.

— |out)
P
Co—C51+—Cy

Ch

in) —

|iIl> — Cl CQ T3]

lout)
By P
[F)*" {_ Al

,Cy).
Py = P3(T3,C3,
where

in) — Cy . J

P . J
L { = |
)& {_ - -

Py P
Py
o) o

Cy).
— PQ(TQ}

P =
Pi(T1,C3) and Ps

re P| =

where

Clifford circuits are a kind of sub-circuit
that can be teleported in; a type of
quantum speculative execution.

CLIFFORD + T IS UNIVERSAL.

MAGIC STATE INJECTION

Prepare the following state:

A) = (|0) + €™41))/+/2
) T Tlg) = o) l Z)

|A) S— Tlo)

Like this, any quantum circuit can be decomposed into
Clifford + Magic State injection.

MAGIC STATE INJECTION

REPEAT UNTIL SUCCESS (RUS)

REPEAT UNTIL SUCCESS

1. Prepare some states in some magic gate factory.

2. Your device can only perform a limited set of
operations (e.g. measurements, and Pauli gates).

3. You attempt a gate; if it fails, apply recovery
operation, and repeat.

HOW TO LOAD DATAINTO A
QUANTUM MEMORY

Imagine you have a list of numbers that you want to
load into your quantum device, e.g. to perform Grover
search on it.

If that list is long, in time | have loaded
the list I've already found the element,
no?

YES, BUT...

QUANTUM DATA LOADING

REPRESENTING DATA

: list = [mO0O, mOl, mlO, ml1l]

1[2]

[£f(item) for item in 1]

IN QUANTUM LAND

L. |m) = 100) ® |mgo) + [01) ® |mg1) + |10) ® |mye) + |11) ®
2. read data: project onto corresponding address register, i.e.

({10] ® Limem)|m) = [mao) |
3. BUT: Let's exploit coherence for the function application! (14 ® Us

How do we get this type of quantum
memory of data?

APPROACH A

Load data serially.

APPROACH B

Load data in parallel.

PARALLEL DATA LOADING

bgg

Yo =0® boo + 1 & bo1

V=0Q%,+1&

@Jb:0®b10+1®b1]

Ancilla qubits

|a;
> |as)

Discard these qubits

S *
—< oS—
&
[X
8 K
—> —
w
U A R H A N IR A N, S R

Time Slice

The gate depth of loading classical
data into a quantum memory can be
reduced exponentially.

But we still need to read the
information once in first place.

QRAM is somewhat unrealistic.

QUANTUM MACHINE LEARNING

1. Use ML to learn something about quantum systems.

2. Use quantum algorithms to speed up classical
neural nets.

3. Quantum neural nets.

NEURAL NETWORK STATES

If|9) = S°7 . ;|i), we need exponentially many
weights to represent the state. So do a variational

ansatz.

1. Find a function i — f(7) =~ ay.

2. Find a function which maintains some property of
the state, e.g. entanglement entropy, fidelity wrt.
some observable, ...

We know this from physics: a family of wavefunctions
Is used to minimize the energy wrt. some Hamiltonian.

NEURAL NETWORK STATES

f(2) is a neural network, e.g. RBM, feed forward,
recurrent, autoencoder, name your favourite.

| sense... competition.

1. Matrix Product States (MPS)

2. Projected Entangled Pair States (PEPS)
3. Tensor network states

NEURAL NETWORK STATES

Surprisingly good for a range of tasks.

1. Representing ground states of Hamiltonians.
2. Communication and error correction

https://bitbucket.org/rumschuettel/coherent-information-optimizer

SPEEDING UP LEARNING

1. SVMs, principal component analysis: HHL
2. Use any quantum optimization algorithm:
e Grover-type algorithms
e Adiabatic evolution, annealing
e Quantum gradient decent
3. Quantum approximate optimization algorithm
(QAOA)

QUANTUM NEURAL NETWORK

If quantum mechanics is linear, how do we encode a
non-linear activation function, like Sigmoid, or ELU?

\\\Q///Q//'//

W N7 7
IR IR REKA
Q ’\\

SOSIR I

There is a quantum neuron:

Input state |x) T

Ancilla qubit |0) — R,(260) T

Output qubit |1)) Y

Ancilla qubit 1 —
qubit 1 [0) - Ry(2¢) T Ri(2¢) HA

Output i
utput qubit |0) —iY

3m/8

L

— q(x)
- ()
| e
s | [—¢°(x)
0 /8 w/4 3w/8 w/2

\\\Q///Q//'//

W N7 7
IR IR REKA
Q ’\\

SOSIR I

QUANTUM ANNEALING

Hamiltonian Ground States

three controlled

/ 2-local interactions

ubit
Y

control /
nodes

https://bitbucket.org/rumschuettel/liquidlearn

HAMILTONIAN SIMULATION

A Hamiltonian is a big matrix that describes the energy
of a quantum system.

For instance: transverse Ising model

H = ZJJO'Z ®0z +Zhaa3

ZN]

HAMILTONIAN SIMULATION

1. Simulating static properties: ground state energy
2. Simulating dynamics: approximate exp(itH).

These tasks are hard—at least on a classical computer.

(1) is known to be QMA-complete (depending on the precision), and (2) is known to be BQP-
complete: we can, in fact, run a quantum computation with a Hamiltonian.

The problems we can exactly solve are
very few. QC promise an exponential
speedup over classical algorithms.

SUZUKI-TROTTER

2
et(A+B) _ (etA/retB/r)r + 0 (t_>

7’)

e There exist much more sophisticated techniques
e The basic building blocks always show up: RUS,
QPE, (oblivious) Grover, Quantum Walks...

THANK YOU!
QUESTIONS?

