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QUANTUM SEARCH

0) " H®"

Grover diffusion operator

N

Ve

H®n

/

210™) (0" — I,

H®n

W

Repeat O(v/N) times




QUANTUM SEARCH

Yields (at least) the well-known quadratic speedup
Building block of several quantum algorithms

Repeat-until-success circuits:
W0) [¢) = /p[0) [¥') + VI —p|L)
Hamiltonian simulation:

W) =P, B:iVil)++/1—-p|L)
Speeding up CSPs:



QUANTUM MAXIMUM FINDING O/~

Expected complexity

function FINDMAXIMUM,, (f, n)

PLV — —0Q0
counter < 0 , "
Uniform superposition
repeat
cmp < (+) — - > piv > comparator against current best score
1)) <~ GROVERSEARCH(cmp o f) > amplify elements larger than pivot
bestIndex < Mgy |1)) > measure index of larger element

piv = max{piv, f(bestIndex)}
counter < counter + 1
until counter = m
end function




QUANTUM EXPONENTIAL SEARCH

Number of necessary iterations unknown in case
of an unknown number of marked elements!
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Repeat an exponentially-increasing number of
times; overall speedup still quadratic.
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SEARCH WITH ADVICE

Instead of having no prior information about the location of the element to
search for, you are given an advice distribution D with pdf p(r), where r is the
rank of the element.




SEARCH WITH ADVICE

Instead of having no prior information about the location of the element to
search for, you are given an advice distribution p with pdf p(r), where r is the
rank of the element.

Two cases: either p is known, or it is unknown.



SEARCH WITH ADVICE: KNOWN DISTRIBUTION

The optimal algorithm is clearly to first look at the most likely
element, i.e. where p(r) is largest.

If r denotes the rank, this is p(0).

If not found, keep looking at p(1), p(2), ... until the element is
found.

Quantumly, you get a quadratic speedup over this classical
scheme.

THIS TYPE OF ADVICE IS USEFUL CLASSICALLY.



SEARCH WITH ADVICE: UNKNOWN DISTRIBUTION

The only thing we can do is obtain samples.
Classically, we have an expected runtime

- 1
;P(T)X}Tr)—”

THIS TYPE OF ADVICE IS USELESS CLASSICALLY.



SEARCH WITH ADVICE: UNKNOWN DISTRIBUTION

The only thing we can do is obtain samples.
On a quantum computer, we can amplify the advice:

THIS TYPE OF ADVICE IS USELESS CLASSICALLY.
BUT IT CAN BE USEFUL ON A QUANTUM COMPUTER.



SEARCH WITH ADVICE: UNKNOWN DISTRIBUTION

function SEARCHWITHADVICE (U, f)

counter < () n . .
U (0) =221 vp(i) [7)
guess < M;ax U, |0)
if guess is marked then

return > early exit for extremely biased p
end if
i + Uniform{0, ..., k7| — 1}
|¥) <~ AMPLITUDEAMPLIFY(f, %) > amplify elements marked by f for ¢ rounds

quess <— Midx W)
if guess is marked then
return
end if
counter + counter + 1
until counter = |log /1]

return GROVERSEARCH(()f) > fallback: do normal Grover search
end function




SEARCH WITH ADVICE: UNKNOWN DISTRIBUTION

In expectation, need

1
O | min AT
( { o) f})

queries to f and the advice oracle. e L
—(1/24+1/k) _9 _
For a powerlaw, i.e. when p(r) & r %, runtime = « O(n ke (=2,-1)
O(logn) k= —2
O(1) otherwise.




QUANTUM MAXIMUM FINDING WITH ADVICE

Based on a generalized maximum finding routine

and search with advice

Theorem 1. Given an advice oracle Uy, with a power law distribution pdf ,(r) o
r~—F, where u advices on the mazimum element, we can find the maximum element
in expected time

(vn) ke [=1,0]
(n=(/2F/k) | e (=2, -1)
(

(

logn) k= -2

1) otherwise.
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FORMAL LANGUAGES

LANGUAGE

1. Regqular
2. Context-Free
3. Context-Sensitive

4. Recursively Enumerable

CORRESPONDING AUTOMATON

1.

4.

Finite State Machine
(DFA, NFA, epsilon-NFA)

Pushdown Automaton
(PDA)

Linear-Bounded
Nondeterministic TM

™



FORMAL LANGUAGES: REGULAR

8 0O
start + b = i » /O*b/
@D D@



FORMAL LANGUAGES: REGULAR

Already useful

The corresponding automata are simple (DFA, NFA, with
epsilon transitions)

They cannot recognize certain strings, e.g. strings where
a sequence of “a’s is to be followed by equally many “b”s



FORMAL LANGUAGES: CONTEXT FREE

Definition 1 (Pushdown Automaton (PDA). A pushdown automaton is an
e-NFA with access to a stack, which itself is given by a stack alphabet I" with
initial stack configuration (Zy) € I', and such that the transition operation

§:Qx ({edUX) x I — 2&xT7

always pops the top element a € T off the stack and returns a list of pairs
(q,8) € Q@ x ' that indicate what state to transition to, and what string to push
onto the stack. Here I'* is the set of strings of arbitrary length in the stack
alphabet, and € is the empty input symbol.

Can store their current state in a limited fashion:
much more powerful



FORMAL LANGUAGES

Regular and context free languages already capture quite
useful classes; many programming languages (e.g.
whitespace, but not C++)

The English language is not a CFG

But: using e.g. an Earley parser, one can decide
membership of a string for a given CFG or regular
grammar in cubic time in the input length!



FORMAL LANGUAGES: DIALOGUES?

An Earley parser can do this in linear time, and much more
complicated dialogue trees (think: Siri) in cubic time.



A QUANTUM EARLEY PARSER

Remark 1. There exists a reversible classical algorithm parsing a context free
grammar with input size n in time O(n*7) and space O(n?logn).
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GENERATIVE MODELS

one to one one to many many to one many to many many to many

! Pt ! Pt Pt
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 GENERATIVE MODELS

target chars: ‘e’ iy “p
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ISN'T THAT SIMILAR TO PROBABILISTIC INPUT TO
A PARSER?

Parsing heuristics

Decoding the output of voice recognition models:

Handwriting recognition, video action labelling...

The common denominator is to decode a probabilistic sequence, and
find the one that ultimately (i.e. at the end) has the highest score
according to some measure.



Baidu Deep Speech

Bai & Research




DEEPSPEECH

State-of-the-art speech recognition system

multi-layer LSTM

Takes as input mel cepstral coefficients (MFCCs)
audio frames of 25 ms, 5 ms overlap, DFT, fold with mel scale, log, DCT

Trained with CTC Loss on Mozilla’s Common Voice Dataset
Output at every frame: letter prediction

KA DN

a probability distribution over “a”-"z”, space, and some special markers.



DEEPSPEECH

m likelihood

A .03
B 011
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E .004
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DEEPSPEECH
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PROBABILISTIC INPUT:
KEEP CALM AND CARRY ON WITH THE BEST GUESS

1. This is called greedy decoding, and does not work well.

White é«/{b‘/}(y 7 ﬁf/‘/oa, [ shot an a/a/ﬁéa/(t " my papanas, How he 9ot o
my popanas, { don T Know,

What is the most likely Which one fits into the
spoken sentence? context best?

2. Keep around multiple options at every point, and toss out bad
guesses as we go along.

THIS IS KNOWN AS BEAM SEARCH.



PROBABILISTIC INPUT: BEAM SEARCH
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FORMAL PROBLEM STATEMENTS

What is the most likely parsed path?
What is the highest scoring path under a secondary metric?

MosT LIKELY PARSE

Input: Decoder M over alphabet > and with set of internal configurations (2. Sequence
of random variables (X;);<, over sample space X.

Question: Find o = argmax,cq Pr(M, = z).

HIGHEST SCORE PARSE
Input: Decoder M over alphabet > and with state space (). Sequence of random
variables (X;);<n over sample space 3. Scoring function F': 0 — R. Let the
highest-scoring element be ™ = argmax, . F(x).
Promise: P(M, = string with index i) = p; = P(7 is at index ). The input is “good
Question: Find 7. advice” on where to
find the best element.



RESULTS

MosT LIKELY PARSE

Input: Decoder M over alphabet > and with set of internal configurations 2. Sequence
of random variables (X;);<, over sample space X.

Question: Find o = argmax,cq Pr(M,, = z).

Theorem 1. For an input sequence of length n of random variables to a parser with a classical

sampling runtime T(n), there exists a quantum search algorithm answering Mosr LIKELY PARSE

with certainty, using 1t /4~/Pr(M,, = o) iterations. In each iteration, it runs a quantum circuit for
the sampler in O(T (n)'-%) time.



RESULTS

HiGHEST SCORE PARSE

Input: Decoder M over alphabet Y and with state space {). Sequence of random
variables (X;)i<pn over sample space ¥. Scoring function £ : {2 — R. Let the
highest-scoring element be 7 = argmax_q F(x).

Promise: P(M,, = string with index i) = p; = P(7 is at index i).

Question: Find 7.

Theorem 3. With the same setup as in theorem | but under the promise that the input tokens
are iid with X; ~ Power (k) over alphabet X (definition 8), that the decoder has a branching
ratio R < |X|, and that we can uniformly sample from the grammar to be decoded, there exists a
quantum algorithm QUANTUMSEARCHDECODE answering HiGHEST SCORE PARSE with an expected
number of iterations

RT|(R., k, P’.E) =0 (Rnf(R,k)) , where f(R, J'() = IOg (%) / ll}g R,
R

and where Hg(k) denotes the R™ harmonic number of order k. Each iteration runs a quantum
circuit for the sampler in time O(T(n)"°).

There exists no classical algorithm to solve this problem based on taking stochastic samples
from the decoder M that requires less than Q(R"™) samples.



ONE STEP BACK:
POWER LAW INPUT = POWER LAW SEARCH SPACE?

— iviaur. wiay 22 4al I1J.«+1 &

If you perform a Fourier expansion of the indicator function 1[b’,c'] and use Fubini's

theorem (which requires some preliminary smoothing of the indicator function to justify
properly, but never mind that) you can convert the n-dimensional z-integral in the previous
comment to a one-dimensional integral over the Fourier variable, which should be a
suitable form for instance for working out asymptotics in various limiting regimes such as
n — 0Q, if that is your application of interest. — Terry Tao May 22 at 18:41

Also, these integrals may obey delay-differential equations similar to that obeyed by the
Dickman or Buchstab functions. See for instance Exercise 39 of my lecture notes
terrytao.wordpress.com/2014/11/23/... — Terry Tao May 22 at 18:48

Terry Tao's suggestion of taking n — 00 is reasonable...but | have downvoted because

- P T b | »




ALGORITHM FOR FULL QUANTUM SEARCH

function QUANTUMSEARCHDECODE,,(U,,, F)
bestScore < —oo
counter < (

repeat
cmp + (+) — bestScore < - > comparator against current best score
1)) <= EXPONENTIALSEARCH(U ,,, cmp o F) > amplify elements larger than pivot
bestScore < Mgcore [V0) > measure new best score

counter < counter + 1
until counter = m
end function




ALGORITHM

Algorithm 2 Algorithm for beam search decoding.
function QuanTuMBEAMDECODE,,(Uy, F', po)

bestScore «— —oo

counter « ()

repeat
cmpy < [(-) = (po < -)] > comparator against threshold
cmpy «— [(-) = (bestScore < -)| > comparator against current best score
amp « [(-) = AMPLITUDEAMPLIFICATION(-, cmp1)] > prunec hypotheses
lr) «— ExpoNENTIALSEARCH(amp o Uy, cmp; o F) > select elements > pivot
bestScore «— Mgcore W) > measure new best score

counter «— counter + 1
until counter = m

end function




WHAT LENGTH SEQUENCES COULD YOU PARSE
WITH DEEPSPEECH? HOW DOES IT COMPARE?

Classical baseline: approximately 200 (Penn Treebank, WikiText2)

runtime
>
p—t —
S
S < <,
— p—t p— p— —
] ] o] (q] 4]
(W] o [dw] = et
] [ul |
beam width

o 10 50 100 500

input sequence length n



SUMMARY....

Quantum Search Decoder with Super Grover-seedup.
Quantum Sampling Algorithm for RGs/CFGs
Quantum Beam Search with better asymptotics

This is motivated on a real-world NN, DeepSpeech.



SUMMARY AND CONCLUSION

Depends on a quantum sampling algorithm for CFGs.
How tight is that bound?

A wider analysis of sequence to sequence models.
Machine translation, time series analysis, action tagging for videos etc.

How NISQ-y are we?
Amplitude amplification is not a near-term quantum algorithm.
But: memory requirement does not grow with beam width, so there will be

a crossing point.
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