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Rules
We present the contesting teams of 2-4 players with one task about work extraction in quantum systems. It
consists of few steps of increasing difficulty; the teams will be judged upon the number of subtasks successfully
solved, as well as the efficiency of solutions. Each solution has to be accompanied by a written explanation
of methods used and implemented, and the compilation guide.

We do not restrict you to any one programming language. You are free to use whichever you prefer
(Python, ProjectQ, Q#, Qiskit, assembly, C++, . . . just no FORTRAN please). At the end of the day,
upload all files to a private github repo and share it with the account @squidschools.

We hope you enjoy the task!:)

The task at hand will mainly encompass a research area called quantum thermodynamics. It studies the
connections between quantum physics and thermodynamics; reviews of the field can be found in [1], [2].

Quick overview: work and information
Landauer’s principle. In 1961, Rolf Landauer has formulated a physical principle that outlines a funda-
mental limit to the heat released when one bit of information is erased, i.e. reset from an unknown state
back to 0, like when you format a hard drive [3]. It sets the lower bound to this heat as kT ln 2 for the
erasure process carried out at temperature T. Originally formulated for classical bits, the principle can be
also generalized for the quantum case [4]. Thus, the erasure of information has a work cost - and our goal
is to extract it (1).

Figure 1: An intuition behind Landauer’s principle. On the left hand side there is a qubit in a pure
state, which corresponds to one bit of information, and heat from the heat bath; on the right hand side, the
qubit is in a fully mixed state, but heat transformed into work which we can use.
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Szilard’s engine. One of the classical examples of such work extraction was proposed by Leo Szilard [5].
He showed that given having prior information about a system allows for work extraction (Figure 2). In his
thought experiment he has a particle in a box in contact with a heat bath at temperature T with a shutter
between the two halves of the box. If one knows where the particle is, for instance, in the right compartment,
one can let it expand to the left and use the moving shutter to extract work, for example, drag a weight. By
letting the piston move very slowly, such that the particle can thermalize with the environment outside the
box at temperature T, and integrating the work gained over the volume expansion of V/2, we obtain:

W =

∫ V

V/2

pdV =

∫ V

V/2

kT

V
dV = kT ln 2.

Figure 2: Szilard’s engine. If we know the location of the particle prior to the experiment (here it is in the
right compartment of the box), we can extract work by letting it expand to the left and using the moving
shutter as pictured above.

A semi-classical example can be seen on Figure 3.
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Figure 3: Work extraction by energy levels manipulation. To just give an idea of how this applies
to the quantum case, an example of how the work can be extracted from a quantum system where one can
raise and lower energy levels, can be constructed [6] (Figure 3). Let us suppose that we have a qubit in a
pure state |0〉 with energy E0. The energy of the excited state E � E0. After connecting the qubit to a
heat bath at temperature T there is small probability p(E) that the qubit can be found in the excited state
〈1|, where the probability is given by Gibbs distribution

p(E) =
1

1 + e(E−E0)/kT
.

Lowering the energy of the excited state in infinitesimal steps results in a work gain at a cost of Landauer’s
limit:

lim
E→∞

∫ E

E0

p(E′)dE′ = kT ln 2

This analysis is still semi-classical, as here we do not explicitly model a device where we store the extracted
work.

In the next few sections, we give an intuition of a different protocol which does not involve moving energy
levels of the system, and can be described as a unitary transformation. It also allows for storing the work
in a separate system, which ensures it is accessible for use. First, we describe the main elements of the
experimental setting, and then give an idea of the key transformation enabling work gain.
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The setting
Here we describe three founding parts of the experimental setting: the information battery, the thermal
qubit and the energy battery (storage).

The information battery. The information battery B is a device where we store information (in the
sense of a nearly-pure quantum state), but not energy (because the Hamiltonian is degenerate: HB = 0). In
the beginning of our task, it consists of one degenerate ε-pure qubit:

ρ
(0)
B =

(
ε|R〉〈R|+ (1− ε)|L〉〈L|

)
, ε� 1,

where {|L〉, |R〉} is the standard basis of the qubit.

The thermal qubits. The extraction of work is only possible via coupling of the information battery
to a thermal bath at a constant temperature T. We portray this interaction as an interaction with a non-
degenerate thermal qubit Qi with an energy gap ∆i, which can be described by a HamiltonianHQi

= ∆i|1〉〈1|
(|0〉 goes for the ground state of the thermal qubit, and |1〉 for the excited). After the qubit thermalizes -
reaches a thermal equilibrium with the heat bath — its state can be written as:

ρ
(0)
Qi

= pi|1〉〈1|+ (1− pi)|0〉〈0|, where pi =
1

1 + e∆i/kT
,

where p(E) is given by Gibbs distribution.

The energy battery. The energy battery is where we store the acquired energy. It can be modelled
as a quantum system S consisting of infinitely many equidistant energy levels with a Hamiltonian HS =∑+N
−N n · δ · |n〉〈n|, N � 1. We will further take the initial state of the storage system as a pure state:

ρ
(0)
S = |0〉〈0|.
Just before we go on further to qualitatively outline the protocol for extracting work from the information

battery modelled as an almost pure state, let us elaborate on which operations we consider allowed in this
setting. First, we let an operation to be carried out on composite system consisting of an information battery
B, a thermal qubit Qi and an energy battery (storage) S. These operations have to be energy-conserving
and reversible, i.e. they need to be unitary and commute with the global Hamiltonian [U,Hglobal] = 0, where
Hglobal is:

Hglobal = HB ⊗ IQi
⊗ IS + IB ⊗HQi

⊗ IS + IB ⊗ IQi
⊗HS .

Secondly, we allow for the qubits to thermalize, namely, undergo a process described above. This set of
allowed operations is typical for resource theories of quantum thermodynamics [1].
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The work extraction protocol for a qubit in an almost pure state
Now let us proceed with the protocol, which is based on the idea proposed in [7]; the process is pictured on
the Figure 4. It is a unitary, which can be formally written as follows (∆i is the energy gap of Qi, and δ is
the energy gap of S):

Ui =
∑
n

(
|L〉B |1〉Qi

|n〉S〈R|B〈0|Qi
〈n+

∆i

δ
|S + |R〉B |0〉Qi

|n+
∆i

δ
〉S〈L|B〈1|Qi

〈n|S
)

+(|R〉B |1〉Qi
〈R|B〈1|Qi

+ |L〉B |0〉Qi
〈L|B〈0|Qi

)⊗ IS

Qualitatively, the action of the unitary can be seen as a list of conditions below:

1. If the information battery and the thermal qubit are in the state |L〉B |1〉Qi , we take them to the state
|R〉B |0〉Qi , and lift the energy battery state from |n〉S to |n+ ∆i

δ 〉S , and vice verse;

2. If the information battery and the thermal qubit are in the state|L〉B |0〉Qi
or |R〉B |1〉Qi

, then nothing
happens.

If we apply this unitary to the initial state of the composite system ρ(0) = ρ
(0)
B ⊗ ρ

(0)
Qi
⊗ ρ(0)

S , we arrive to
the state ρ(1) = Uρ(0)U†. To make an interesting observation, let us look at the final states of the reduced
subsystems B, Q and S:

ρ
(1)
B = trQiS(ρ(1)) = p|R〉〈R|+ (1− p)|L〉〈L|;

ρ
(1)
Qi

= trBS(ρ(1)) =
(
ε|1〉〈1|+ (1− ε)|0〉〈0|

)
;

ρ
(1)
S = trBQi

(ρ(1)) = (1− p)ε| − ∆i

δ
〉〈−∆i

δ
|+ [pε+ (1− p)(1− ε)]|0〉〈0|+ p(1− ε)|∆i

δ
〉〈∆i

δ
|.

First, our transformation simply swapped the states of the thermal qubit and the information battery;
secondly, there is a non-zero probability for the energy battery to actually lower its energy and end up in
the state | − 1〉〈−1|. Intuitively, in order for the observed energy of the battery to have an increase, the
probability to find it in the state |1〉〈1| has to be no less than the probability to find it in the state with
reduced energy | − 1〉〈−1|. A simple calculation then yields p ≥ ε; this will become useful later, when we
turn to the case of N thermal qubits.

The case of N thermal qubits. The protocol above can be extended for the case of N thermal qubits
Q1, . . . , QN [8]. Here we give a brief idea of how the protocol proceeds and what is the intuition behind it.

For simplicity let us suppose that the qubits are ordered by how wide their energy gap is, that is, if we
denote the energy gap of the kth qubit as ∆k, then δ1 > δ2 > · · · > δN (p1 < p2 < · · · < pN ). Then the
work extraction process can be described by a sequence of unitary transformations {Uk}k=1,n, where each
transformation Uk exchanges the following states:

Uk : |L〉B |1〉Qk
|n〉S ↔ |R〉B |0〉Qk

|n+
∆k

δ
〉S ,

where δ is the energy gap of the energy battery (Figure 5). Running the protocol for a sequence where each
next qubit has a narrower gap (and thus larger p), allows us to keep the information battery “purer” than
the thermal qubit for each stage of the protocol. This ensures the net increase of energy stored in the energy
battery (as we have seen on the example of the thermal qubit).
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Figure 4: The key transformation. Essentially, the unitary provides an exchange of states shown above,
which corresponds to lowering/lifting of energy of the energy battery.

Figure 5: The setting for N thermal qubits. Here we order thermal qubits in the order of their energy
gaps and then carry out the transformation on the Figure 4 for each qubit individually.
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Tasks
1. Implement the work extraction protocol for 1 degenerate qubit information battery and 1 thermal qubit

in an energy-conserving way, and store work in the energy battery (storage). Optimize the energy gap
of the thermal qubit; compute the efficiency of the process and fluctuations in the battery.

2. Generalize the protocol for N thermal qubits. What is the final average energy in S, and the fluctua-
tions?

3. Suppose now that you have one information qubit in a fully mixed state. Carry out an erasure operation
on it, i.e. reset it to |0〉.

4. The engineers decided to replace the information battery, and now it consists of m degenerate qubits.
Correct the work extraction protocol and implement it.

5. After all your achievements so far, you have been promoted to work on more ambitious projects. You
are moved to another lab, and here the information battery can only be constructed out of qubits in
an arbitrary state ρB . Work with what you are provided, and adjust your protocol: first for one such
qubit, and then for m of them.
Hint: use a unitary scheme for information compression, for example, Schumacher compression [9]; a
quick overview can be found in [10] (p 547).
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